Suppr超能文献

使用统计势能对天然状态和参考状态的蛋白质模型结构进行绝对质量评估。

Absolute quality evaluation of protein model structures using statistical potentials with respect to the native and reference states.

机构信息

Department of Applied Information Sciences, Graduate School of Information Science, Tohoku University, 6-3-09, Aoba, Aramaki, Aoba-Ku, Sendai, Miyagi 980-8579, Japan.

出版信息

Proteins. 2011 May;79(5):1550-63. doi: 10.1002/prot.22982. Epub 2011 Mar 1.

Abstract

In protein structure prediction, it is crucial to evaluate the degree of native-likeness of given model structures. Statistical potentials extracted from protein structure data sets are widely used for such quality assessment problems, but they are only applicable for comparing different models of the same protein. Although various other methods, such as machine learning approaches, were developed to predict the absolute similarity of model structures to the native ones, they required a set of decoy structures in addition to the model structures. In this paper, we tried to reformulate the statistical potentials as absolute quality scores, without using the information from decoy structures. For this purpose, we regarded the native state and the reference state, which are necessary components of statistical potentials, as the good and bad standard states, respectively, and first showed that the statistical potentials can be regarded as the state functions, which relate a model structure to the native and reference states. Then, we proposed a standardized measure of protein structure, called native-likeness, by interpolating the score of a model structure between the native and reference state scores defined for each protein. The native-likeness correlated with the similarity to the native structures and discriminated the native structures from the models, with better accuracy than the raw score. Our results show that statistical potentials can quantify the native-like properties of protein structures, if they fully utilize the statistical information obtained from the data set.

摘要

在蛋白质结构预测中,评估给定模型结构的天然度至关重要。从蛋白质结构数据集提取的统计势广泛用于此类质量评估问题,但它们仅适用于比较同一蛋白质的不同模型。尽管开发了各种其他方法,例如机器学习方法,来预测模型结构与天然结构的绝对相似性,但它们除了模型结构之外还需要一组诱饵结构。在本文中,我们尝试将统计势重新表述为绝对质量分数,而不使用诱饵结构的信息。为此,我们将天然状态和参考状态(统计势的必要组成部分)分别视为良好和不良的标准状态,并首先表明统计势可以被视为将模型结构与天然状态和参考状态相关联的状态函数。然后,我们通过在为每个蛋白质定义的天然状态和参考状态分数之间对模型结构的分数进行内插,提出了一种称为天然度的标准化蛋白质结构度量标准。天然度与与天然结构的相似性相关,并且比原始分数更准确地区分了天然结构和模型。我们的结果表明,如果充分利用从数据集中获得的统计信息,统计势可以量化蛋白质结构的天然属性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验