Dipartimento di Biologia, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133, Rome, Italy.
Nanoscale. 2011 Apr;3(4):1411-20. doi: 10.1039/c0nr00875c. Epub 2011 Mar 2.
Nanotechnology promises a revolution in pharmacology to improve or create ex novo therapies. Cerium oxide nanoparticles (nanoceria), well-known as catalysts, possess an astonishing pharmacological potential due to their antioxidant properties, deriving from a fraction of Ce(3+) ions present in CeO(2). These defects, compensated by oxygen vacancies, are enriched at the surface and therefore in nanosized particles. Reactions involving redox cycles between the Ce(3+) and Ce(4+) oxidation states allow nanoceria to react catalytically with superoxide and hydrogen peroxide, mimicking the behavior of two key antioxidant enzymes, superoxide dismutase and catalase, potentially abating all noxious intracellular reactive oxygen species (ROS) via a self-regenerating mechanism. Hence nanoceria, apparently well tolerated by the organism, might fight chronic inflammation and the pathologies associated with oxidative stress, which include cancer and neurodegeneration. Here we review the biological effects of nanoceria as they emerge from in vitro and in vivo studies, considering biocompatibility and the peculiar antioxidant mechanisms.
纳米技术有望在药理学领域带来一场革命,以改善或创造全新的治疗方法。氧化铈纳米粒子(纳米铈)作为催化剂而闻名,由于其抗氧化特性,具有惊人的药理学潜力,这些特性源于 CeO2 中存在的一部分 Ce(3+) 离子。这些由氧空位补偿的缺陷在表面富集,因此在纳米颗粒中更为丰富。涉及 Ce(3+)和 Ce(4+)氧化态之间的氧化还原循环的反应使纳米铈能够催化超氧化物和过氧化氢反应,模拟两种关键抗氧化酶,超氧化物歧化酶和过氧化氢酶的行为,通过自再生机制潜在地减轻所有有害的细胞内活性氧(ROS)。因此,纳米铈在体内似乎能很好地被机体耐受,可能对抗慢性炎症和与氧化应激相关的病理学,包括癌症和神经退行性变。在这里,我们回顾了纳米铈的生物学效应,这些效应来自体外和体内研究,同时考虑了生物相容性和特殊的抗氧化机制。