Suppr超能文献

用于早期检测的生物标志物评估框架:卵巢癌生物标志物组合的验证。

A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer.

机构信息

Division of Cancer Prevention, National Cancer Institute, National Institute of Health, Bethesda, MD 20892-7346, USA.

出版信息

Cancer Prev Res (Phila). 2011 Mar;4(3):375-83. doi: 10.1158/1940-6207.CAPR-10-0193.

Abstract

A panel of biomarkers may improve predictive performance over individual markers. Although many biomarker panels have been described for ovarian cancer, few studies used prediagnostic samples to assess the potential of the panels for early detection. We conducted a multisite systematic evaluation of biomarker panels using prediagnostic serum samples from the Prostate, Lung, Colorectal, and Ovarian Cancer (PLCO) screening trial. Using a nested case-control design, levels of 28 biomarkers were measured laboratory-blinded in 118 serum samples obtained before cancer diagnosis and 951 serum samples from matched controls. Five predictive models, each containing 6 to 8 biomarkers, were evaluated according to a predetermined analysis plan. Three sequential analyses were conducted: blinded validation of previously established models (step 1); simultaneous split-sample discovery and validation of models (step 2); and exploratory discovery of new models (step 3). Sensitivity, specificity, sensitivity at 98% specificity, and AUC were computed for the models and CA125 alone among 67 cases diagnosed within one year of blood draw and 476 matched controls. In step 1, one model showed comparable performance to CA125, with sensitivity, specificity, and AUC at 69.2%, 96.6%, and 0.892, respectively. Remaining models had poorer performance than CA125 alone. In step 2, we observed a similar pattern. In step 3, a model derived from all 28 markers failed to show improvement over CA125. Thus, biomarker panels discovered in diagnostic samples may not validate in prediagnostic samples; utilizing prediagnostic samples for discovery may be helpful in developing validated early detection panels.

摘要

一个生物标志物面板可能比单个标志物具有更好的预测性能。虽然已经描述了许多卵巢癌的生物标志物面板,但很少有研究使用诊断前样本来评估面板用于早期检测的潜力。我们使用前列腺癌、肺癌、结直肠癌和卵巢癌(PLCO)筛查试验的诊断前血清样本进行了多站点系统的生物标志物面板评估。使用巢式病例对照设计,在癌症诊断前获得的 118 份血清样本和 951 份匹配对照血清样本中,实验室盲法测量了 28 种生物标志物的水平。根据预定的分析计划,评估了包含 6 到 8 种生物标志物的 5 个预测模型。进行了三个连续的分析:先前建立的模型的盲法验证(步骤 1);模型的同时拆分样本发现和验证(步骤 2);以及新模型的探索性发现(步骤 3)。在采血后一年内诊断出的 67 例病例和 476 例匹配对照中,计算了模型和 CA125 单独使用的模型的灵敏度、特异性、98%特异性时的灵敏度和 AUC。在步骤 1 中,一个模型的表现与 CA125 相当,灵敏度、特异性和 AUC 分别为 69.2%、96.6%和 0.892。其余模型的表现均逊于 CA125 单独使用。在步骤 2 中,我们观察到类似的模式。在步骤 3 中,一个来自所有 28 种标志物的模型未能显示出优于 CA125 的效果。因此,在诊断样本中发现的生物标志物面板可能无法在诊断前样本中验证;利用诊断前样本进行发现可能有助于开发经过验证的早期检测面板。

相似文献

1
A framework for evaluating biomarkers for early detection: validation of biomarker panels for ovarian cancer.
Cancer Prev Res (Phila). 2011 Mar;4(3):375-83. doi: 10.1158/1940-6207.CAPR-10-0193.
2
A multiplex biomarker assay improves the diagnostic performance of HE4 and CA125 in ovarian tumor patients.
PLoS One. 2020 Oct 19;15(10):e0240418. doi: 10.1371/journal.pone.0240418. eCollection 2020.
5
Assessing lead time of selected ovarian cancer biomarkers: a nested case-control study.
J Natl Cancer Inst. 2010 Jan 6;102(1):26-38. doi: 10.1093/jnci/djp438. Epub 2009 Dec 30.
6
Validation of a Novel Biomarker Panel for the Detection of Ovarian Cancer.
Cancer Epidemiol Biomarkers Prev. 2016 Sep;25(9):1333-40. doi: 10.1158/1055-9965.EPI-15-1299. Epub 2016 Jul 22.
8
Bead-based ELISA for validation of ovarian cancer early detection markers.
Clin Cancer Res. 2006 Apr 1;12(7 Pt 1):2117-24. doi: 10.1158/1078-0432.CCR-05-2007.
10
HE4 combined with CA125: favorable screening tool for ovarian cancer.
Med Oncol. 2014 Jan;31(1):808. doi: 10.1007/s12032-013-0808-0. Epub 2013 Dec 10.

引用本文的文献

3
Chewing the fat: How lipidomics is changing our understanding of human health and disease in 2022.
Anal Sci Adv. 2023 May 10;4(3-4):104-131. doi: 10.1002/ansa.202300009. eCollection 2023 May.
7
Machine Learning Identifies a Signature of Nine Exosomal RNAs That Predicts Hepatocellular Carcinoma.
Cancers (Basel). 2023 Jul 24;15(14):3749. doi: 10.3390/cancers15143749.
8
MS-Based Proteomics of Body Fluids: The End of the Beginning.
Mol Cell Proteomics. 2023 Jul;22(7):100577. doi: 10.1016/j.mcpro.2023.100577. Epub 2023 May 19.
9
A Boolean-based machine learning framework identifies predictive biomarkers of HSP90-targeted therapy response in prostate cancer.
Front Mol Biosci. 2023 Jan 19;10:1094321. doi: 10.3389/fmolb.2023.1094321. eCollection 2023.
10
Estimating stage-specific sensitivity for cancer screening tests.
J Med Screen. 2023 Jun;30(2):69-73. doi: 10.1177/09691413231154801. Epub 2023 Feb 3.

本文引用的文献

1
Ovarian cancer biomarker performance in prostate, lung, colorectal, and ovarian cancer screening trial specimens.
Cancer Prev Res (Phila). 2011 Mar;4(3):365-74. doi: 10.1158/1940-6207.CAPR-10-0195.
2
Early detection of ovarian cancer.
Biomark Med. 2008 Jun;2(3):291-303. doi: 10.2217/17520363.2.3.291.
3
Assessing lead time of selected ovarian cancer biomarkers: a nested case-control study.
J Natl Cancer Inst. 2010 Jan 6;102(1):26-38. doi: 10.1093/jnci/djp438. Epub 2009 Dec 30.
4
Sources of bias in specimens for research about molecular markers for cancer.
J Clin Oncol. 2010 Feb 1;28(4):698-704. doi: 10.1200/JCO.2009.25.6065. Epub 2009 Dec 28.
5
A novel multiple marker bioassay utilizing HE4 and CA125 for the prediction of ovarian cancer in patients with a pelvic mass.
Gynecol Oncol. 2009 Jan;112(1):40-6. doi: 10.1016/j.ygyno.2008.08.031. Epub 2008 Oct 12.
6
Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design.
J Natl Cancer Inst. 2008 Oct 15;100(20):1432-8. doi: 10.1093/jnci/djn326. Epub 2008 Oct 7.
7
Systematic evaluation of candidate blood markers for detecting ovarian cancer.
PLoS One. 2008 Jul 9;3(7):e2633. doi: 10.1371/journal.pone.0002633.
9
Diagnostic markers for early detection of ovarian cancer.
Clin Cancer Res. 2008 Feb 15;14(4):1065-72. doi: 10.1158/1078-0432.CCR-07-1569. Epub 2008 Feb 7.
10
Effects of blood collection conditions on ovarian cancer serum markers.
PLoS One. 2007 Dec 5;2(12):e1281. doi: 10.1371/journal.pone.0001281.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验