Suppr超能文献

GBOOST:一种基于 GPU 的工具,用于在全基因组病例对照研究中检测基因-基因相互作用。

GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.

机构信息

Laboratory for Bioinformatics and Computational Biology, Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.

出版信息

Bioinformatics. 2011 May 1;27(9):1309-10. doi: 10.1093/bioinformatics/btr114. Epub 2011 Mar 3.

Abstract

MOTIVATION

Collecting millions of genetic variations is feasible with the advanced genotyping technology. With a huge amount of genetic variations data in hand, developing efficient algorithms to carry out the gene-gene interaction analysis in a timely manner has become one of the key problems in genome-wide association studies (GWAS). Boolean operation-based screening and testing (BOOST), a recent work in GWAS, completes gene-gene interaction analysis in 2.5 days on a desktop computer. Compared with central processing units (CPUs), graphic processing units (GPUs) are highly parallel hardware and provide massive computing resources. We are, therefore, motivated to use GPUs to further speed up the analysis of gene-gene interactions.

RESULTS

We implement the BOOST method based on a GPU framework and name it GBOOST. GBOOST achieves a 40-fold speedup compared with BOOST. It completes the analysis of Wellcome Trust Case Control Consortium Type 2 Diabetes (WTCCC T2D) genome data within 1.34 h on a desktop computer equipped with Nvidia GeForce GTX 285 display card.

AVAILABILITY

GBOOST code is available at http://bioinformatics.ust.hk/BOOST.html#GBOOST.

摘要

动机

随着先进的基因分型技术的发展,收集数百万个遗传变异是可行的。有了大量的遗传变异数据,开发有效的算法来及时进行基因-基因相互作用分析已成为全基因组关联研究 (GWAS) 的关键问题之一。基于布尔运算的筛选和测试 (BOOST) 是 GWAS 中的一项最新工作,它可以在台式计算机上在 2.5 天内完成基因-基因相互作用分析。与中央处理器 (CPU) 相比,图形处理单元 (GPU) 是高度并行的硬件,可以提供大量的计算资源。因此,我们有动力使用 GPU 进一步加快基因-基因相互作用的分析速度。

结果

我们在 GPU 框架上实现了 BOOST 方法,并将其命名为 GBOOST。与 BOOST 相比,GBOOST 实现了 40 倍的加速。它在配备 Nvidia GeForce GTX 285 显示卡的台式计算机上,可在 1.34 小时内完成惠康信托基金会 2 型糖尿病 (WTCCC T2D) 基因组数据的分析。

可用性

GBOOST 代码可在 http://bioinformatics.ust.hk/BOOST.html#GBOOST 获得。

相似文献

1
GBOOST: a GPU-based tool for detecting gene-gene interactions in genome-wide case control studies.
Bioinformatics. 2011 May 1;27(9):1309-10. doi: 10.1093/bioinformatics/btr114. Epub 2011 Mar 3.
2
The complete compositional epistasis detection in genome-wide association studies.
BMC Genet. 2013 Feb 19;14:7. doi: 10.1186/1471-2156-14-7.
3
BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
Am J Hum Genet. 2010 Sep 10;87(3):325-40. doi: 10.1016/j.ajhg.2010.07.021.
4
Performance of epistasis detection methods in semi-simulated GWAS.
BMC Bioinformatics. 2018 Jun 18;19(1):231. doi: 10.1186/s12859-018-2229-8.
5
PBOOST: a GPU-based tool for parallel permutation tests in genome-wide association studies.
Bioinformatics. 2015 May 1;31(9):1460-2. doi: 10.1093/bioinformatics/btu840. Epub 2014 Dec 21.
6
Development of GMDR-GPU for gene-gene interaction analysis and its application to WTCCC GWAS data for type 2 diabetes.
PLoS One. 2013 Apr 23;8(4):e61943. doi: 10.1371/journal.pone.0061943. Print 2013.
7
Heterogeneous computing architecture for fast detection of SNP-SNP interactions.
BMC Bioinformatics. 2014 Jun 25;15:216. doi: 10.1186/1471-2105-15-216.
8
GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
BMC Genomics. 2013;14 Suppl 3(Suppl 3):S10. doi: 10.1186/1471-2164-14-S3-S10. Epub 2013 May 28.
9
Real-world comparison of CPU and GPU implementations of SNPrank: a network analysis tool for GWAS.
Bioinformatics. 2011 Jan 15;27(2):284-5. doi: 10.1093/bioinformatics/btq638. Epub 2010 Nov 25.
10
MrBayes on a graphics processing unit.
Bioinformatics. 2011 May 1;27(9):1255-61. doi: 10.1093/bioinformatics/btr140. Epub 2011 Mar 16.

引用本文的文献

1
Review on GPU accelerated methods for genome-wide SNP-SNP interactions.
Mol Genet Genomics. 2024 Dec 29;300(1):10. doi: 10.1007/s00438-024-02214-6.
2
GWASTool: A web pipeline for detecting SNP-phenotype associations.
Fundam Res. 2024 Mar 22;4(4):761-769. doi: 10.1016/j.fmre.2024.03.005. eCollection 2024 Jul.
3
A Novel Detection Method for High-Order SNP Epistatic Interactions Based on Explicit-Encoding-Based Multitasking Harmony Search.
Interdiscip Sci. 2024 Sep;16(3):688-711. doi: 10.1007/s12539-024-00621-2. Epub 2024 Jul 2.
4
BridGE: a pathway-based analysis tool for detecting genetic interactions from GWAS.
Nat Protoc. 2024 May;19(5):1400-1435. doi: 10.1038/s41596-024-00954-8. Epub 2024 Mar 21.
6
A Novel Multitasking Ant Colony Optimization Method for Detecting Multiorder SNP Interactions.
Interdiscip Sci. 2022 Dec;14(4):814-832. doi: 10.1007/s12539-022-00530-2. Epub 2022 Jul 5.
7
Data Integration Challenges for Machine Learning in Precision Medicine.
Front Med (Lausanne). 2022 Jan 25;8:784455. doi: 10.3389/fmed.2021.784455. eCollection 2021.

本文引用的文献

1
BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
Am J Hum Genet. 2010 Sep 10;87(3):325-40. doi: 10.1016/j.ajhg.2010.07.021.
2
Multifactor dimensionality reduction for graphics processing units enables genome-wide testing of epistasis in sporadic ALS.
Bioinformatics. 2010 Mar 1;26(5):694-5. doi: 10.1093/bioinformatics/btq009. Epub 2010 Jan 16.
3
Detecting gene-gene interactions that underlie human diseases.
Nat Rev Genet. 2009 Jun;10(6):392-404. doi: 10.1038/nrg2579.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验