Suppr超能文献

卵圆孔未闭对静息和运动时肺气体交换效率的影响。

Effect of a patent foramen ovale on pulmonary gas exchange efficiency at rest and during exercise.

机构信息

University of Oregon, Department of Human Physiology, Eugene, Oregon, USA.

出版信息

J Appl Physiol (1985). 2011 May;110(5):1354-61. doi: 10.1152/japplphysiol.01246.2010. Epub 2011 Mar 3.

Abstract

The prevalence of a patent foramen ovale (PFO) is ~30%, and this source of right-to-left shunt could result in greater pulmonary gas exchange impairment at rest and during exercise. The aim of this work was to determine if individuals with an asymptomatic PFO (PFO+) have greater pulmonary gas exchange inefficiency at rest and during exercise than subjects without a PFO (PFO-). Separated by 1 h of rest, 8 PFO+ and 8 PFO- subjects performed two incremental cycle ergometer exercise tests to voluntary exhaustion while breathing either room air or hypoxic gas [fraction of inspired O(2) (FI(O(2))) = 0.12]. Using echocardiography, we detected small, intermittent boluses of saline contrast bubbles entering directly into the left atrium within 3 heart beats at rest and during both exercise conditions in PFO+. These findings suggest a qualitatively small intracardiac shunt at rest and during exercise in PFO+. The alveolar-to-arterial oxygen difference (AaDo(2)) was significantly (P < 0.05) different between PFO+ and PFO- in normoxia (5.9 ± 5.1 vs. 0.5 ± 3.5 mmHg) and hypoxia (10.1 ± 5.9 vs. 4.1 ± 3.1 mmHg) at rest, but not during exercise. However, arterial oxygen saturation was significantly different between PFO+ and PFO- at peak exercise in normoxia (94.3 ± 0.9 vs. 95.8 ± 1.0%) as a result of a significant difference in esophageal temperature (38.4 ± 0.3 vs. 38.0 ± 0.3°C). An asymptomatic PFO contributes to pulmonary gas exchange inefficiency at rest but not during exercise in healthy humans and therefore does not explain intersubject variability in the AaDO(2) at maximal exercise.

摘要

卵圆孔未闭(PFO)的患病率约为 30%,这种右向左分流的来源可能导致休息和运动时的肺气体交换受损更大。本研究的目的是确定无症状 PFO(PFO+)患者在休息和运动时的肺气体交换效率是否比没有 PFO(PFO-)的患者更高。8 名 PFO+和 8 名 PFO-患者在休息 1 小时后,分别在呼吸空气或低氧气体[吸入氧分数(FI(O2))= 0.12]时进行了两次递增的踏车运动试验,直至力竭。通过超声心动图,我们在 PFO+中发现,在休息和运动期间,每隔 3 次心跳就会有小的、间歇性的盐水对比剂微泡直接进入左心房。这些发现表明,PFO+在休息和运动时存在小的、定性的心内分流。在休息时,PFO+的肺泡动脉氧差(AaDo2)在常氧(5.9±5.1 对 0.5±3.5mmHg)和低氧(10.1±5.9 对 4.1±3.1mmHg)时与 PFO-显著不同(P<0.05),但在运动时则没有。然而,由于食管温度的显著差异(38.4±0.3 对 38.0±0.3°C),在常氧下,PFO+在运动峰值时的动脉血氧饱和度与 PFO-显著不同(94.3±0.9 对 95.8±1.0%)。无症状的 PFO 导致健康人在休息时的肺气体交换效率降低,但在运动时则没有,因此不能解释最大运动时 AaDo2 的个体间变异性。

相似文献

1
Effect of a patent foramen ovale on pulmonary gas exchange efficiency at rest and during exercise.
J Appl Physiol (1985). 2011 May;110(5):1354-61. doi: 10.1152/japplphysiol.01246.2010. Epub 2011 Mar 3.
4
5
Exercise treadmill saline contrast echocardiography for the detection of patent foramen ovale in hypoxia.
Int J Cardiovasc Imaging. 2015 Dec;31(8):1537-43. doi: 10.1007/s10554-015-0727-6. Epub 2015 Aug 1.
6
Physiological impact of patent foramen ovale on pulmonary gas exchange, ventilatory acclimatization, and thermoregulation.
J Appl Physiol (1985). 2016 Aug 1;121(2):512-7. doi: 10.1152/japplphysiol.00192.2015. Epub 2016 Jul 14.
7
Higher oesophageal temperature at rest and during exercise in humans with patent foramen ovale.
J Physiol. 2015 Oct 15;593(20):4615-30. doi: 10.1113/JP270219. Epub 2015 Aug 13.
8
Hyperoxia-induced stepwise reduction in blood flow through intrapulmonary, but not intracardiac, shunt during exercise.
Am J Physiol Regul Integr Comp Physiol. 2023 Jul 1;325(1):R96-R105. doi: 10.1152/ajpregu.00014.2023. Epub 2023 May 15.
9
Risk mitigation in divers with persistent (patent) foramen ovale.
Diving Hyperb Med. 2019 Jun 30;49(2):77-78. doi: 10.28920/dhm49.2.77-78.

引用本文的文献

1
Decompression illness: a comprehensive overview.
Diving Hyperb Med. 2024 Mar 31;54(1Suppl):1-53. doi: 10.28920/dhm54.1.suppl.1-53.
2
Heart-brain axis: Association of congenital heart abnormality and brain diseases.
Front Cardiovasc Med. 2023 Mar 29;10:1071820. doi: 10.3389/fcvm.2023.1071820. eCollection 2023.
3
Differential Brain and Muscle Tissue Oxygenation Responses to Exercise in Tibetans Compared to Han Chinese.
Front Physiol. 2021 Feb 24;12:617954. doi: 10.3389/fphys.2021.617954. eCollection 2021.
4
Ventilatory responses to acute hypoxia and hypercapnia in humans with a patent foramen ovale.
J Appl Physiol (1985). 2019 Mar 1;126(3):730-738. doi: 10.1152/japplphysiol.00741.2018. Epub 2018 Dec 6.
7
Higher oesophageal temperature at rest and during exercise in humans with patent foramen ovale.
J Physiol. 2015 Oct 15;593(20):4615-30. doi: 10.1113/JP270219. Epub 2015 Aug 13.
8
The brain's heart - therapeutic opportunities for patent foramen ovale (PFO) and neurovascular disease.
Pharmacol Ther. 2013 Aug;139(2):111-23. doi: 10.1016/j.pharmthera.2013.03.007. Epub 2013 Mar 23.

本文引用的文献

1
3
Counterpoint: Exercise-induced intrapulmonary shunting is real.
J Appl Physiol (1985). 2009 Sep;107(3):994-7. doi: 10.1152/japplphysiol.91489.2008a.
4
Point: Exercise-induced intrapulmonary shunting is imaginary.
J Appl Physiol (1985). 2009 Sep;107(3):993-4. doi: 10.1152/japplphysiol.91489.2008. Epub 2008 Nov 20.
6
Hyperoxia prevents exercise-induced intrapulmonary arteriovenous shunt in healthy humans.
J Physiol. 2008 Sep 15;586(18):4559-65. doi: 10.1113/jphysiol.2008.159350. Epub 2008 Aug 7.
7
Intrapulmonary shunting and pulmonary gas exchange during normoxic and hypoxic exercise in healthy humans.
J Appl Physiol (1985). 2008 May;104(5):1418-25. doi: 10.1152/japplphysiol.00208.2007. Epub 2008 Feb 21.
8
Ideal alveolar air and the analysis of ventilation-perfusion relationships in the lungs.
J Appl Physiol. 1949 Jun;1(12):825-47. doi: 10.1152/jappl.1949.1.12.825.
9
Patent foramen ovale and high-altitude pulmonary edema.
JAMA. 2006 Dec 27;296(24):2954-8. doi: 10.1001/jama.296.24.2954.
10
A critical review of patent foramen ovale detection using saline contrast echocardiography: when bubbles lie.
J Am Soc Echocardiogr. 2006 Feb;19(2):215-22. doi: 10.1016/j.echo.2005.09.023.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验