Li Chen, Nagasaki Masao, Koh Chuan Hock, Miyano Satoru
Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
Mol Biosyst. 2011 May;7(5):1576-92. doi: 10.1039/c0mb00253d. Epub 2011 Mar 3.
Mathematical modeling and simulation studies are playing an increasingly important role in helping researchers elucidate how living organisms function in cells. In systems biology, researchers typically tune many parameters manually to achieve simulation results that are consistent with biological knowledge. This severely limits the size and complexity of simulation models built. In order to break this limitation, we propose a computational framework to automatically estimate kinetic parameters for a given network structure. We utilized an online (on-the-fly) model checking technique (which saves resources compared to the offline approach), with a quantitative modeling and simulation architecture named hybrid functional Petri net with extension (HFPNe). We demonstrate the applicability of this framework by the analysis of the underlying model for the neuronal cell fate decision model (ASE fate model) in Caenorhabditis elegans. First, we built a quantitative ASE fate model containing 3327 components emulating nine genetic conditions. Then, using our developed efficient online model checker, MIRACH 1.0, together with parameter estimation, we ran 20-million simulation runs, and were able to locate 57 parameter sets for 23 parameters in the model that are consistent with 45 biological rules extracted from published biological articles without much manual intervention. To evaluate the robustness of these 57 parameter sets, we run another 20 million simulation runs using different magnitudes of noise. Our simulation results concluded that among these models, one model is the most reasonable and robust simulation model owing to the high stability against these stochastic noises. Our simulation results provide interesting biological findings which could be used for future wet-lab experiments.
数学建模和仿真研究在帮助研究人员阐明生物体在细胞中的功能方面发挥着越来越重要的作用。在系统生物学中,研究人员通常手动调整许多参数,以获得与生物学知识一致的仿真结果。这严重限制了所构建仿真模型的规模和复杂性。为了打破这一限制,我们提出了一个计算框架,用于自动估计给定网络结构的动力学参数。我们利用了一种在线(实时)模型检查技术(与离线方法相比节省资源),以及一种名为扩展混合功能Petri网(HFPNe)的定量建模和仿真架构。我们通过分析秀丽隐杆线虫神经元细胞命运决定模型(ASE命运模型)的基础模型,证明了该框架的适用性。首先,我们构建了一个包含3327个组件的定量ASE命运模型,模拟了九种遗传条件。然后,使用我们开发的高效在线模型检查器MIRACH 1.0,结合参数估计,我们进行了2000万次仿真运行,并且能够在无需太多人工干预的情况下,为模型中的23个参数找到57组与从已发表生物学文章中提取的45条生物学规则一致的参数集。为了评估这57组参数集的稳健性,我们使用不同幅度的噪声又进行了2000万次仿真运行。我们的仿真结果表明,在这些模型中,由于对这些随机噪声具有高稳定性,有一个模型是最合理且最稳健的仿真模型。我们的仿真结果提供了有趣的生物学发现,可用于未来的湿实验室实验。