Chemistry Department, Bowling Green State University, Bowling Green, OH 43403, USA.
Photochem Photobiol Sci. 2011 Jun;10(6):867-86. doi: 10.1039/c0pp00290a. Epub 2011 Mar 4.
The application of computational chemistry in resolving photochemical and photobiological problems depends on theoretical models and calculation strategies that allow an understanding of how and when the energy contained in a photon can be used or dissipated by a molecule. Progress in this arena has been the result of a scientific journey that can be traced from the 1960s and 1970s with the development of the concept of the "photochemical funnel", and again from the 1980s and 1990s with the development and application of ab initio multiconfigurational quantum chemistry. Mainly following the viewpoint and contributions of the corresponding author (together with others), here we show that both the early and the ongoing research points to a central role of conical intersections in the molecular-level control of the selectivity and efficiency of photochemical reactions and internal conversion processes.
计算化学在解决光化学和光生物学问题中的应用依赖于理论模型和计算策略,这些模型和策略可以帮助我们理解光子中的能量如何以及何时可以被分子利用或耗散。这一领域的进展是科学探索的结果,可以追溯到 20 世纪 60 年代和 70 年代,当时发展了“光化学漏斗”的概念,而从 80 年代和 90 年代开始,从头计算多组态量子化学得到了发展和应用。主要基于通讯作者(和其他人)的观点和贡献,我们在这里表明,早期和正在进行的研究都指向了锥形交叉在分子水平上控制光化学反应和内转换过程的选择性和效率中的核心作用。