Institute of Chemistry and the Lise Meitner Minerva Center for Computational Quantum Chemistry, Hebrew University, 91904, Jerusalem, Israel.
J Biol Inorg Chem. 2011 Aug;16(6):841-55. doi: 10.1007/s00775-011-0763-1. Epub 2011 Mar 4.
This commentary focuses on the conceptual interpretation of the bonding of O(2) and NO to heme in oxyheme and nitrosylheme complexes, using high-level ab initio complete active space self-consistent field (CASSCF)/molecular mechanical (MM), gas-phase CASSCF, and CASSCF followed by second-order perturbation theory (CASPT2) calculations as well as density functional theory (DFT) calculations. The commentary shows that expanding the complex multiconfigurational (MC) wave functions into valence bond (VB)-type configurations based on localized orbitals provides significant insight into bonding and precise definitions of oxidation states. Furthermore, the VB "reading" of the wave function unifies the descriptions of DFT and MC theories, reconciling controversies and surprises. In so doing, we demonstrate the impact of the protein bulk polarity and its hydrogen-bonding capability on the bonding. The insight provided by "reading" the VB content of the MC wave functions highlights the potential of this approach as a general paradigm in future computational bioinorganic chemistry. A great deal of insight lies in this road.
本评论主要关注使用高精度从头算完全活性空间自洽场 (CASSCF)/分子力学 (MM)、气相 CASSCF 和 CASSCF 后二阶微扰理论 (CASPT2) 计算以及密度泛函理论 (DFT) 计算,对氧合血红素和亚硝酰血红素配合物中 O(2)和 NO 与血红素结合的概念性解释。评论表明,将复杂的多组态 (MC) 波函数扩展为基于局域轨道的价键 (VB) 型构型,可以深入了解键合和氧化态的精确定义。此外,VB 对波函数的“解读”统一了 DFT 和 MC 理论的描述,调和了争议和惊喜。通过这种方式,我们展示了蛋白质整体极性及其氢键能力对键合的影响。通过“解读” MC 波函数的 VB 内容提供的见解突出了这种方法作为未来计算生物无机化学中通用范例的潜力。这条道路蕴含着巨大的洞察力。