Department of Chemistry, Stanford University, CA 94305.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16333-8. doi: 10.1073/pnas.1315734110. Epub 2013 Sep 23.
Hemoglobin (Hb) is the heme-containing O2 transport protein essential for life in all vertebrates. The resting high-spin (S = 2) ferrous form, deoxy-Hb, combines with triplet O2, forming diamagnetic (S = 0) oxy-Hb. Understanding this electronic structure is the key first step in understanding transition metal-O2 interaction. However, despite intense spectroscopic and theoretical studies, the electronic structure description of oxy-Hb remains elusive, with at least three different descriptions proposed by Pauling, Weiss, and McClure-Goddard, based on theory, spectroscopy, and crystallography. Here, a combination of X-ray absorption spectroscopy and extended X-ray absorption fine structure, supported by density functional theory calculations, help resolve this debate. X-ray absorption spectroscopy data on solution and crystalline oxy-Hb indicate both geometric and electronic structure differences suggesting that two of the previous descriptions are correct for the Fe-O2 center in oxy-Hb. These results support the multiconfigurational nature of the ground state developed by theoretical results. Additionally, it is shown here that small differences in hydrogen bonding and solvation effects can tune the ground state, tipping it into one of the two probable configurations. These data underscore the importance of solution spectroscopy and show that the electronic structure in the crystalline form may not always reflect the true ground-state description in solution.
血红蛋白(Hb)是所有脊椎动物生命所必需的含铁的 O2 运输蛋白。处于静止高自旋(S = 2)亚铁形式的脱氧 Hb 与三重态 O2 结合,形成抗磁性(S = 0)氧合 Hb。理解这种电子结构是理解过渡金属-O2 相互作用的关键第一步。然而,尽管进行了强烈的光谱和理论研究,但氧合 Hb 的电子结构描述仍然难以捉摸,Pauling、Weiss 和 McClure-Goddard 根据理论、光谱和晶体学提出了至少三种不同的描述。在这里,X 射线吸收光谱和扩展 X 射线吸收精细结构的结合,辅以密度泛函理论计算,有助于解决这一争论。关于溶液和结晶氧合 Hb 的 X 射线吸收光谱数据表明存在几何和电子结构差异,这表明以前的两种描述都适用于氧合 Hb 中的 Fe-O2 中心。这些结果支持理论结果所开发的基态的多组态性质。此外,这里还表明,氢键和溶剂化效应的微小差异可以调整基态,使其倾向于两种可能的构型之一。这些数据强调了溶液光谱的重要性,并表明晶体形式的电子结构并不总是反映溶液中真实的基态描述。