Suppr超能文献

化学耦合同步的合成振荡器的自主同步。

Autonomous synchronization of chemically coupled synthetic oscillators.

机构信息

Department of Biosystems Science and Engineering, and Swiss Institute of Bioinformatics, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland.

出版信息

Bull Math Biol. 2011 Nov;73(11):2678-706. doi: 10.1007/s11538-011-9642-8. Epub 2011 Mar 4.

Abstract

Synthetic biology has recently provided functional single-cell oscillators. With a few exceptions, however, synchronization across a population has not been achieved yet. In particular, designing a cell coupling mechanism to achieve autonomous synchronization is not straightforward since there are usually several different design alternatives. Here, we propose a method to mathematically predict autonomous synchronization properties, and to identify the network structure with the best performance, thus increasing the feasibility for a successful implementation in vivo.Our method relies on the reduction of ODE-based models for synthetic oscillators to a phase description, and the subsequent analysis of the phase model either in the spatially homogeneous or heterogeneous case. This analysis identifies three major factors determining if and when autonomous synchronization can be achieved, namely cell density, cell to cell variability, and structural design decisions. Moreover, when considering a spatially heterogeneous medium, we observe phase waves. These waves may hinder synchronization substantially, and their suppression should be considered in the design process.In contrast to previous work, we analyze the synchronization process of models of experimentally validated synthetic oscillators in mammalian cells. Alternative designs for cell-to-cell communication via a quorum sensing mechanism differ in few mechanistic details, but these differences have important implications for autonomous synchronization. Our analysis suggests that not only the periodical transcription of the protein producing the signaling molecule, but also of the receptor protein is necessary to achieve good performance.

摘要

合成生物学最近提供了功能性的单细胞振荡器。然而,除了少数例外,尚未实现整个种群的同步。特别是,设计一种细胞耦合机制来实现自主同步并不简单,因为通常有几种不同的设计方案。在这里,我们提出了一种方法,可以从数学上预测自主同步特性,并确定具有最佳性能的网络结构,从而增加在体内成功实施的可行性。

我们的方法依赖于将基于 ODE 的合成振荡器模型简化为相位描述,然后对同质或异质情况下的相位模型进行分析。这种分析确定了三个主要因素,决定了是否可以实现自主同步,以及何时可以实现自主同步,即细胞密度、细胞间变异性和结构设计决策。此外,当考虑空间异质介质时,我们观察到相位波。这些波可能会严重阻碍同步,在设计过程中应考虑抑制这些波。

与以前的工作不同,我们分析了在哺乳动物细胞中实验验证的合成振荡器模型的同步过程。通过群体感应机制进行细胞间通信的替代设计在机械细节上有所不同,但这些差异对自主同步有重要影响。我们的分析表明,不仅需要周期性地转录产生信号分子的蛋白质,还需要周期性地转录受体蛋白,才能实现良好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验