Karaisalı Vocational School, Çukurova University, 01770 Karaisalı, Adana, Turkey.
Environ Monit Assess. 2012 Jan;184(1):141-7. doi: 10.1007/s10661-011-1953-6. Epub 2011 Mar 5.
Precipitable water (PW) is an important atmospheric variable for climate system calculation. Local monthly mean PW values were measured by daily radiosonde observations for the time period from 1990 to 2006. Artificial neural network (ANN) method was applied for modeling and prediction of mean precipitable water data in Çukurova region, south of Turkey. We applied Levenberg-Marquardt (LM) learning algorithm and logistic sigmoid transfer function in the network. In order to train our neural network we used data of Adana station, which are assumed to give a general idea about the precipitable water of Çukurova region. Thus, meteorological and geographical data (altitude, temperature, pressure, and humidity) were used in the input layer of the network for Çukurova region. Precipitable water was the output. Correlation coefficient (R(2)) between the predicted and measured values for monthly mean daily sum with LM method values was found to be 94.00% (training), 91.84% (testing), respectively. The findings revealed that the ANN-based prediction technique for estimating PW values is as effective as meteorological radiosonde observations. In addition, the results suggest that ANN method values be used so as to predict the precipitable water.
可降水量(PW)是气候系统计算的一个重要大气变量。1990 年至 2006 年期间,利用每日无线电探空观测测量了当地月平均 PW 值。应用人工神经网络(ANN)方法对土耳其南部的Çukurova 地区的平均可降水量数据进行建模和预测。我们在网络中应用了 Levenberg-Marquardt(LM)学习算法和逻辑斯谛 sigmoid 传递函数。为了训练我们的神经网络,我们使用了阿达纳站的数据,这些数据假设可以提供Çukurova 地区可降水量的总体情况。因此,气象和地理数据(海拔、温度、压力和湿度)被用于网络的输入层,用于Çukurova 地区。可降水量是输出。发现 LM 方法的月平均日总和的预测值与实测值之间的相关系数(R(2))分别为 94.00%(训练)和 91.84%(测试)。研究结果表明,基于 ANN 的 PW 值估计预测技术与气象无线电探空观测一样有效。此外,研究结果表明,可以使用 ANN 方法值来预测可降水量。