Suppr超能文献

胆汁蛋白质组谱可区分胆管癌、原发性硬化性胆管炎和胆总管结石。

Bile proteomic profiles differentiate cholangiocarcinoma from primary sclerosing cholangitis and choledocholithiasis.

机构信息

Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.

出版信息

Hepatology. 2011 Mar;53(3):875-84. doi: 10.1002/hep.24103. Epub 2011 Jan 3.

Abstract

UNLABELLED

Early detection of malignant biliary tract diseases, especially cholangiocarcinoma (CC) in patients with primary sclerosing cholangitis (PSC), is very difficult and often comes too late to give the patient a therapeutic benefit. We hypothesize that bile proteomic analysis distinguishes CC from nonmalignant lesions. We used capillary electrophoresis mass spectrometry (CE-MS) to identify disease-specific peptide patterns in patients with choledocholithiasis (n = 16), PSC (n = 18), and CC (n = 16) in a training set. A model for differentiation of choledocholithiasis from PSC and CC (PSC/CC model) and another model distinguishing CC from PSC (CC model) were subsequently validated in independent cohorts (choledocholithiasis [n = 14], PSC [n = 18] and CC [n = 25]). Peptides were characterized by sequencing. Application of the PSC/CC model in the independent test cohort resulted in correct exclusion of 12/14 bile samples from patients with choledocholithiasis and identification of 40/43 patients with PSC or CC (86% specificity, 93% sensitivity). The corresponding receiver operating characteristic (ROC) analysis revealed an area under the curve (AUC) of 0.93 (95% confidence interval [CI]: 0.82-0.98, P = 0.0001). The CC model succeeded in an accurate detection of 14/18 bile samples from patients with PSC and 21/25 samples with CC (78% specificity, 84% sensitivity) in the independent cohort, resulting in an AUC value of 0.87 (95% CI: 0.73-0.95, P = 0.0001) in ROC analysis. Eight out of 10 samples of patients with CC complicating PSC were identified.

CONCLUSION

Bile proteomic analysis discriminates benign conditions from CC accurately. This method may become a diagnostic tool in future as it offers a new possibility to diagnose malignant bile duct disease and thus enables efficient therapy particularly in patients with PSC.

摘要

目的

早期检测恶性胆道疾病,特别是原发性硬化性胆管炎(PSC)患者中的胆管癌(CC)非常困难,往往为时已晚,无法为患者带来治疗益处。我们假设胆汁蛋白质组分析可区分 CC 与非恶性病变。我们使用毛细管电泳质谱(CE-MS)在训练集中鉴定了胆总管结石(n=16)、PSC(n=18)和 CC(n=16)患者的疾病特异性肽图谱。随后,在独立队列中验证了用于区分胆总管结石与 PSC 和 CC 的模型(PSC/CC 模型)和另一个用于区分 CC 与 PSC 的模型(CC 模型)(胆总管结石[n=14]、PSC [n=18]和 CC [n=25])。通过测序对肽进行了表征。在独立的测试队列中应用 PSC/CC 模型,正确排除了 12/14 例来自胆总管结石患者的胆汁样本,并鉴定了 40/43 例 PSC 或 CC 患者(特异性 86%,敏感性 93%)。相应的接收器操作特征(ROC)分析显示曲线下面积(AUC)为 0.93(95%置信区间[CI]:0.82-0.98,P=0.0001)。CC 模型在独立队列中成功准确地检测到 14/18 例 PSC 患者和 21/25 例 CC 患者的胆汁样本(特异性 78%,敏感性 84%),ROC 分析的 AUC 值为 0.87(95%CI:0.73-0.95,P=0.0001)。10 例合并 PSC 的 CC 患者中有 8 例被识别。

结论

胆汁蛋白质组分析可准确区分良性疾病与 CC。这种方法将来可能成为一种诊断工具,因为它为诊断恶性胆管疾病提供了新的可能性,从而可以在 PSC 患者中实现有效的治疗。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验