Gladstone Institute of Cardiovascular Disease, 1650 Owens St,, San Francisco, CA 94158, USA.
Stem Cell Res Ther. 2011 Mar 4;2(2):11. doi: 10.1186/scrt52.
The controlled expression of many genes, including G-protein coupled receptors (GPCRs), is important for delineating gene functions in complex model systems. Binary systems for inducible regulation of transgene expression are widely used in mice. One system is the tTA/TRE expression system, composed of a tetracycline-dependent DNA binding factor and a separate tetracycline operon. However, the requirement for two separate transgenes (one for each tTA or TRE component) makes this system less amenable to models requiring directed cell targeting, increases the risk of multiple transgene integration sites, and requires extensive screening for appropriately-functioning clones.
We developed a single, polycistronic tetracycline-inducible expression platform to control the expression of multiple cistrons in mammalian cells. This platform has three basic constructs: regulator, responder, and destination vectors. The modular platform is compatible with both the TetOff (tTA) and TetOn (rtTA) systems. The modular Gateway recombineering-compatible components facilitate rapidly generating vectors to genetically modify mammalian cells. We apply this system to use the elongation factor 1α (EF1α) promoter to drive doxycycline-regulated expression of both the fluorescent marker mCherry and an engineered Gs-coupled GPCR "Rs1" separated by a 2A ribosomal skip site.
We show that our combined expression construct drives expression of both the mCherry and Rs1 transgenes in a doxycycline-dependent manner. We successfully target the expression construct into the Rosa26 locus of mouse embryonic stem (ES) cells. Rs1 expression in mouse ES cells increases cAMP accumulation via both basal and ligand-induced Gs mechanisms and is associated with increased embryoid body size. Heterozygous mice carrying the Rs1 expression construct showed normal growth and weight, and developed small increases in bone formation that could be observed in the calvaria.
Our results demonstrate the feasibility of a single-vector strategy that combines both the tTA and TRE tetracycline-regulated components for use in cells and mouse models. Although the EF1α promoter is useful for driving expression in pluripotent cells, a single copy of the EF1α promoter did not drive high levels of mCherry and Rs1 expression in the differentiated tissues of adult mice. These findings indicate that promoter selection is an important factor when developing transgene expression models.
许多基因的表达受到控制,包括 G 蛋白偶联受体 (GPCRs),这对于阐明复杂模型系统中的基因功能非常重要。用于转基因表达诱导调节的二元系统在小鼠中得到了广泛的应用。其中一个系统是 tTA/TRE 表达系统,由四环素依赖性 DNA 结合因子和单独的四环素操纵子组成。然而,该系统需要两个独立的转基因(每个 tTA 或 TRE 组件一个),使得该系统不太适用于需要定向细胞靶向的模型,增加了多个转基因整合位点的风险,并需要进行广泛的筛选,以获得功能适当的克隆。
我们开发了一种单一的、多顺反子的四环素诱导表达平台,用于控制哺乳动物细胞中多个顺式元件的表达。该平台有三个基本构建体:调节剂、应答器和目标载体。该模块化平台与 TetOff(tTA)和 TetOn(rtTA)系统兼容。模块化 Gateway 重组兼容组件便于快速生成用于遗传修饰哺乳动物细胞的载体。我们应用该系统使用延伸因子 1α(EF1α)启动子驱动荧光标记 mCherry 和工程化 Gs 偶联 GPCR“Rs1”的四环素调控表达,两者之间由 2A 核糖体跳跃位点隔开。
我们表明,我们的组合表达构建体以依赖于多西环素的方式驱动 mCherry 和 Rs1 转基因的表达。我们成功地将表达构建体靶向到小鼠胚胎干细胞(ES)细胞的 Rosa26 基因座中。在小鼠 ES 细胞中,Rs1 的表达通过基础和配体诱导的 Gs 机制增加 cAMP 积累,并与胚状体大小的增加相关。携带 Rs1 表达构建体的杂合子小鼠生长和体重正常,并且在颅骨中可以观察到骨形成的小增加。
我们的结果证明了一种单一载体策略的可行性,该策略结合了 tTA 和 TRE 四环素调控元件,可用于细胞和小鼠模型。虽然 EF1α 启动子可用于驱动多能细胞中的表达,但在成年小鼠的分化组织中,单个 EF1α 启动子不能驱动 mCherry 和 Rs1 的高水平表达。这些发现表明,启动子选择是开发转基因表达模型的一个重要因素。