Health Leisure and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada.
Exp Physiol. 2011 May;96(5):528-38. doi: 10.1113/expphysiol.2010.054973. Epub 2011 Mar 4.
The superimposed twitch technique was used to study the effect of whole-body hypothermia on maximal voluntary activation of elbow flexors. Seven subjects [26.4 ± 4 years old (mean ± SD)] were exposed to 60 min of either immersion in 8°C water (hypothermia) or sitting in 22°C air (control). Voluntary activation was assessed during brief (3 s) maximal voluntary contractions (MVCs) and then during a 2 min fatiguing sustained MVC. Hypothermia (core temperature 34.8 ± 0.9°C) decreased maximal voluntary torque from 98.2 ± 1.0 to 82.8 ± 5.8% MVC (P < 0.001) and increased central conduction time from 7.9 ± 0.4 to 9.1 ± 0.7 ms (P < 0.05). Hypothermia also decreased maximal resting twitch amplitude from 17.6 ± 4.0 to 10.0 ± 1.7% MVC (P < 0.005) and increased the time-to-peak twitch tension from 55.4 ± 4.0 to 79.0 ± 11.7 ms (P < 0.001). During the 2 min contraction, hypothermia decreased initial torque (P < 0.01) but attenuated the subsequent rate of torque decline (control from 95.5 ± 4 to 29.4 ± 8% MVC; and hypothermia from 85.3 ± 8 to 37.3 ± 5% MVC; P < 0.01). Cortical superimposed twitches increased as fatigue developed but were always lower in the hypothermic conditions. Cortical superimposed twitches increased from a value of 0.4 ± 0.3% MVC prefatigue to 3.9 ± 1.4% MVC postfatigue (P < 0.001) in the hypothermic conditions and from 1.7 ± 0.9 to 5.5 ± 2.3% MVC in control conditions. Our results suggest that hypothermia decreases MVCs primarily via peripheral mechanisms and attenuates the rate of fatigue development by reducing central fatigue.
叠加抽搐技术用于研究全身低温对肘屈肌最大自主激活的影响。7 名受试者[26.4±4 岁(均值±标准差)]分别暴露于 8°C 水中 60 分钟(低温组)或 22°C 空气中(对照组)。在短暂(3 秒)最大自主收缩(MVC)期间评估自主激活,然后在 2 分钟疲劳持续 MVC 期间评估自主激活。低温(核心温度 34.8±0.9°C)使最大自主扭矩从 98.2±1.0% MVC 降低至 82.8±5.8% MVC(P<0.001),并使中枢传导时间从 7.9±0.4 ms 增加至 9.1±0.7 ms(P<0.05)。低温还使最大静息抽搐幅度从 17.6±4.0% MVC 降低至 10.0±1.7% MVC(P<0.005),并使峰值抽搐张力的时间从 55.4±4.0 ms 增加至 79.0±11.7 ms(P<0.001)。在 2 分钟收缩过程中,低温降低了初始扭矩(P<0.01),但减轻了随后的扭矩下降速度(对照组从 95.5±4% MVC 降至 29.4±8% MVC;低温组从 85.3±8% MVC 降至 37.3±5% MVC;P<0.01)。皮质叠加抽搐随着疲劳的发展而增加,但在低温条件下总是较低。在低温条件下,皮质叠加抽搐从疲劳前的 0.4±0.3% MVC 增加到疲劳后的 3.9±1.4% MVC(P<0.001),而在对照组条件下从 1.7±0.9% MVC 增加到 5.5±2.3% MVC。我们的结果表明,低温主要通过外周机制降低 MVCs,并通过降低中枢疲劳来减轻疲劳发展的速度。