Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.
Glia. 2011 Jun;59(6):857-68. doi: 10.1002/glia.21154. Epub 2011 Mar 4.
The tumor suppressor adenomatous polyposis coli (APC) is a multifunctional protein that inhibits the Wnt/beta-catenin signaling pathway and regulates the microtubule and actin cytoskeletons. Using conditional knockout (CKO) mice in which the APC gene is inactivated in glial fibrillary acidic protein (GFAP)-expressing cells, we show a selective and critical role for APC in maintaining the morphology and function of cerebellar Bergmann glia, which are specialized astroglia that extend polarized radial processes from the Purkinje cell layer to the pial surface. APC-CKO mice developed Bergmann glia normally until the accumulation of beta-catenin started around postnatal day 10 (P10). Their radial fibers then became shortened with a marked reduction of branching collaterals and their cell bodies translocated into the molecular layer followed by loss of their pial contact and transformation into stellate-shaped cells by P21. Purkinje neurons were normal in appearance and number at P21, but there was significant loss of Purkinje neurons and cerebellar atrophy by middle age. Outside the cerebellum, neither beta-catenin accumulation nor morphological changes were identified in GFAP-expressing astroglia, indicating region-specific effects of APC deletion and an essential role for APC in maintaining the unique morphology of Bergmann glia as compared with other astroglia. These results demonstrate that loss of APC selectively disrupts the Bergmann glial scaffold in late postnatal development and leads to cerebellar degeneration with loss of Purkinje neurons in adults, providing another potential mechanism for region-specific non-cell autonomous neurodegeneration.
肿瘤抑制因子腺瘤性结肠息肉病(APC)是一种多功能蛋白,可抑制 Wnt/β-连环蛋白信号通路并调节微管和肌动蛋白细胞骨架。我们使用条件性敲除(CKO)小鼠,其中 APC 基因在胶质纤维酸性蛋白(GFAP)表达细胞中失活,结果表明 APC 在维持小脑颗粒细胞形态和功能方面具有选择性和关键性作用,小脑颗粒细胞是一种特化的星形胶质细胞,从浦肯野细胞层延伸出极化的放射状突起到达软脑膜表面。APC-CKO 小鼠在出生后第 10 天(P10)左右开始积累β-连环蛋白之前,正常发育出颗粒细胞。随后,它们的放射状纤维变短,分支侧支明显减少,细胞体移位到分子层,然后失去与软脑膜的接触,并在 P21 时转化为星状细胞。在 P21 时,浦肯野神经元在外观和数量上都是正常的,但到中年时,会出现明显的浦肯野神经元丢失和小脑萎缩。在小脑外,GFAP 表达的星形胶质细胞中既没有发现β-连环蛋白的积累,也没有观察到形态变化,这表明 APC 缺失具有区域特异性效应,与其他星形胶质细胞相比,APC 对于维持颗粒细胞独特的形态具有重要作用。这些结果表明,APC 的缺失选择性地破坏了出生后晚期颗粒细胞的支架,并导致成年时浦肯野神经元丢失的小脑退行性变,为区域特异性非细胞自主神经退行性变提供了另一种潜在机制。