Suppr超能文献

通过 NMR 光谱法测定金刚烷类药物在双层脂膜和十二烷基磷酸胆碱胶束中流感 M2 跨膜域孔内的特定结合及其极性胺的方向。

Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy.

机构信息

Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.

出版信息

J Am Chem Soc. 2011 Mar 30;133(12):4274-84. doi: 10.1021/ja102581n. Epub 2011 Mar 7.

Abstract

The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as dodecylphosphocholine (DPC) micelles. (13)C-(2)H rotational-echo double-resonance NMR experiments of (13)C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in DPC micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18-60) bound to lipid bilayers. Specific (2)H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the channel, but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of this membrane protein.

摘要

流感 M2 蛋白(M2TM)的跨膜域形成四聚质子通道,对于病毒生命周期至关重要。质子通道活性被含有胺的金刚烷药物金刚烷胺和金刚乙胺抑制,这些药物已被证明特异性结合于 M2TM 蛋白位于 Ser31 附近的孔。然而,极性胺指向通道的 N 端还是 C 端尚未确定。阐明极性基团的方向将揭示药物结合抑制这种质子通道的机制,并促进新抑制剂的合理设计。在这项研究中,我们使用脂质双层和十二烷基磷酸胆碱(DPC)胶束中重建的 M2TM 来确定极性胺的方向。(13)C-(2)H 旋转回波双共振 NMR 实验显示,在脂质双层中,(13)C 标记的 M2TM 和氘代金刚烷胺的甲基与 Gly34 接近,表明极性胺指向通道的 C 端。DPC 胶束中 M2TM 的溶液 NMR 实验表明,药物结合导致蛋白质的化学位移发生显著变化,与 M2TM 和结合于脂质双层的 M2(18-60)非常相似。药物的特定(2)H 标记允许分配药物-蛋白质交叉峰,这表明金刚烷胺和金刚乙胺以与结合于脂质双层的 M2TM 相同的方式结合到孔中。这些结果强烈表明,金刚烷抑制 M2TM 不仅通过直接物理阻塞通道来实现,而且还通过干扰质子感应残基 His37 的平衡常数来实现。在不同的去污剂 DHPC 中未观察到的与药理学相关的特定孔结合位点在 DPC 胶束中的重现,突出了去污剂环境对这种膜蛋白功能结构的显著影响。

相似文献

2
Membrane-dependent effects of a cytoplasmic helix on the structure and drug binding of the influenza virus M2 protein.
J Am Chem Soc. 2011 Aug 3;133(30):11572-9. doi: 10.1021/ja202051n. Epub 2011 Jul 7.
5
The boundary lipid around DMPC-spanning influenza A M2 transmembrane domain channels: Its structure and potential for drug accommodation.
Biochim Biophys Acta Biomembr. 2020 Mar 1;1862(3):183156. doi: 10.1016/j.bbamem.2019.183156. Epub 2019 Dec 14.
7
Conformational plasticity of the influenza A M2 transmembrane helix in lipid bilayers under varying pH, drug binding, and membrane thickness.
Biochim Biophys Acta. 2011 Jan;1808(1):415-23. doi: 10.1016/j.bbamem.2010.09.014. Epub 2010 Sep 29.
8
The conformation of the pore region of the M2 proton channel depends on lipid bilayer environment.
Protein Sci. 2005 Apr;14(4):856-61. doi: 10.1110/ps.041185805. Epub 2005 Mar 1.
9
19F NMR detection of the complex between amantadine and the receptor portion of the influenza A M2 ion channel in DPC micelles.
Bioorg Med Chem Lett. 2007 Jul 15;17(14):3947-52. doi: 10.1016/j.bmcl.2007.04.100. Epub 2007 May 3.

引用本文的文献

2
Distal protein-protein interactions contribute to nirmatrelvir resistance.
Nat Commun. 2025 Feb 1;16(1):1266. doi: 10.1038/s41467-025-56651-x.
3
Oligomeric State and Drug Binding of the SARS-CoV-2 Envelope Protein Are Sensitive to the Ectodomain.
J Am Chem Soc. 2024 Sep 4;146(35):24537-24552. doi: 10.1021/jacs.4c07686. Epub 2024 Aug 21.
4
Structure-Based Lead Optimization of Enterovirus D68 2A Protease Inhibitors.
J Med Chem. 2023 Nov 9;66(21):14544-14563. doi: 10.1021/acs.jmedchem.3c00995. Epub 2023 Oct 19.
6
Antiviral Approaches against Influenza Virus.
Clin Microbiol Rev. 2023 Mar 23;36(1):e0004022. doi: 10.1128/cmr.00040-22. Epub 2023 Jan 16.
7
Drug-Repurposing Screening Identified Tropifexor as a SARS-CoV-2 Papain-like Protease Inhibitor.
ACS Infect Dis. 2022 May 13;8(5):1022-1030. doi: 10.1021/acsinfecdis.1c00629. Epub 2022 Apr 11.
8
Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by F solid-state NMR.
Biochim Biophys Acta Biomembr. 2022 Jul 1;1864(7):183909. doi: 10.1016/j.bbamem.2022.183909. Epub 2022 Mar 8.
9
From Acid Activation Mechanisms of Proton Conduction to Design of Inhibitors of the M2 Proton Channel of Influenza A Virus.
Front Mol Biosci. 2022 Jan 14;8:796229. doi: 10.3389/fmolb.2021.796229. eCollection 2021.
10
Influenza AM2 Channel Oligomerization Is Sensitive to Its Chemical Environment.
Anal Chem. 2021 Dec 7;93(48):16273-16281. doi: 10.1021/acs.analchem.1c04660. Epub 2021 Nov 23.

本文引用的文献

1
Insight into the mechanism of the influenza A proton channel from a structure in a lipid bilayer.
Science. 2010 Oct 22;330(6003):509-12. doi: 10.1126/science.1191750.
2
Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR.
Science. 2010 Oct 22;330(6003):505-8. doi: 10.1126/science.1191714.
3
Conformational plasticity of the influenza A M2 transmembrane helix in lipid bilayers under varying pH, drug binding, and membrane thickness.
Biochim Biophys Acta. 2011 Jan;1808(1):415-23. doi: 10.1016/j.bbamem.2010.09.014. Epub 2010 Sep 29.
4
Influenza virus M2 protein mediates ESCRT-independent membrane scission.
Cell. 2010 Sep 17;142(6):902-13. doi: 10.1016/j.cell.2010.08.029.
6
Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15075-80. doi: 10.1073/pnas.1007071107. Epub 2010 Aug 5.
7
Coexistence of two adamantane binding sites in the influenza A M2 ion channel.
Proc Natl Acad Sci U S A. 2010 Aug 3;107(31):13866-71. doi: 10.1073/pnas.1002051107. Epub 2010 Jul 19.
8
Influenza virus m2 ion channel protein is necessary for filamentous virion formation.
J Virol. 2010 May;84(10):5078-88. doi: 10.1128/JVI.00119-10. Epub 2010 Mar 10.
9
Cholesterol-binding viral proteins in virus entry and morphogenesis.
Subcell Biochem. 2010;51:77-108. doi: 10.1007/978-90-481-8622-8_3.
10
Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers.
Nature. 2010 Feb 4;463(7281):689-92. doi: 10.1038/nature08722.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验