Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , California 94158 , United States.
Membrane Structural and Functional Biology (MS&FB) Group, School of Medicine and School of Biochemistry and Immunology , Trinity College Dublin , Dublin D02 R590 , Ireland.
Biochemistry. 2020 Feb 4;59(4):627-634. doi: 10.1021/acs.biochem.9b00971. Epub 2020 Jan 13.
The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inward conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.
V27A 突变使流感 A 基质 2(M2)质子通道对金刚烷胺产生抗药性,并且在流感 A 病毒的循环种群中变得越来越普遍。我们使用 X 射线晶体学确定了金刚烷胺结合物与 M2(22-46)V27A 和 M2(21-61)V27A 内构象的结构。金刚烷胺结合部位对于两种晶体结构几乎相同。与位置 27 为缬氨酸的 M2“野生型”(WT)相比,我们观察到由于 V27A 突变,通道孔在其 N 端更宽,并且该突变消除了对于金刚烷胺和 rimantadine 结合很重要的 V27 侧链疏水性相互作用。金刚烷胺抑制剂通过在孔中改变其结合部位来阻断 WT 和 V27A 突变体通道中的质子传导,这取决于位置 27 存在哪种残基。此外,在 M2(21-61)V27A 结构中,与 M2(22-46)结构相比,通道的 C 末端被紧密包装。我们观察到,残基 Asp44、Arg45 和 Phe48 面向通道孔的中心,并且在质子通过 His37 门离开 M2 通道后,它们将很好地与质子相互作用。对 M2(22-46)V27A-金刚烷胺复合物的 300 ns 分子动力学模拟准确地预测了 X 射线晶体结构中 M2(22-46)V27A 复合物孔内配体和水的位置。