Department of Pathology, Harvard Medical School, Boston, MA 02115, USA.
Neuron. 2011 Mar 10;69(5):930-44. doi: 10.1016/j.neuron.2011.02.008.
Control of neuronal positioning is fundamental to normal brain development. However, the cell-intrinsic mechanisms that govern neuronal positioning remain to be elucidated. Here, we report that the spliced protein products of the transcriptional regulator SnoN, SnoN1 and SnoN2, harbor opposing functions in the coordinate regulation of neuronal branching and positioning. Knockdown of SnoN2 stimulates axon branching in primary neurons and impairs migration of granule neurons in the rat cerebellar cortex in vivo. By contrast, SnoN1 knockdown suppresses SnoN2 knockdown-induced neuronal branching and strikingly triggers excessive migration of granule neurons in the cerebellar cortex. We also find that SnoN1 forms a complex with the transcription factor FOXO1 that represses the X-linked lissencephaly gene encoding doublecortin (DCX). Accordingly, repression of DCX mediates the ability of SnoN1 to regulate branching in primary neurons and granule neuron migration in vivo. These data define an isoform-specific SnoN1-FOXO1 transcriptional complex that orchestrates neuronal branching and positioning in the brain with important implications for the study of developmental disorders of cognition and epilepsy.
神经元定位的控制对于大脑的正常发育至关重要。然而,调节神经元定位的细胞内在机制仍有待阐明。在这里,我们报告转录调控因子 SnoN 的剪接蛋白产物 SnoN1 和 SnoN2 在协调调节神经元分支和定位方面具有相反的功能。SnoN2 的敲低会刺激原代神经元中的轴突分支,并损害体内大鼠小脑皮质颗粒神经元的迁移。相比之下,SnoN1 的敲低会抑制 SnoN2 敲低诱导的神经元分支,并显著引发小脑皮质颗粒神经元的过度迁移。我们还发现 SnoN1 与转录因子 FOXO1 形成复合物,抑制编码双皮质蛋白 (DCX) 的 X 连锁无脑回基因。因此,对 DCX 的抑制介导了 SnoN1 调节原代神经元分支和体内颗粒神经元迁移的能力。这些数据定义了一种具有亚型特异性的 SnoN1-FOXO1 转录复合物,该复合物在大脑中协调神经元的分支和定位,对认知和癫痫发育障碍的研究具有重要意义。