Stegmüller Judith, Huynh Mai Anh, Yuan Zengqiang, Konishi Yoshiyuki, Bonni Azad
Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA.
J Neurosci. 2008 Feb 20;28(8):1961-9. doi: 10.1523/JNEUROSCI.3061-07.2008.
Axon growth is critical to the establishment of neuronal connectivity. The E3 ubiquitin ligase Cdh1-anaphase-promoting complex (Cdh1-APC) and its substrate the transcriptional modulator SnoN form a cell-intrinsic pathway that orchestrates axonal morphogenesis in the mammalian brain. How the Cdh1-APC/SnoN pathway is controlled in the nervous system remained unknown. Here, we report that the TGFbeta-regulated signaling protein Smad2 plays a key role in regulating the Cdh1-APC/SnoN pathway in neurons. We find that Smad2 is expressed in primary granule neurons of the developing rat cerebellar cortex. The Smad signaling pathway is basally activated in neurons. Endogenous Smad2 is phosphorylated, localized in the nucleus, and forms a physical complex with endogenous SnoN in granule neurons. Inhibition of Smad signaling by several distinct approaches, including genetic knock-down of Smad2, stimulates axonal growth. Biochemical evidence and genetic epistasis analyses reveal that Smad2 acts upstream of SnoN in a shared pathway with Cdh1-APC in the control of axonal growth. Remarkably, Smad2 knock-down also overrides the ability of adult rat myelin to inhibit axonal growth. Collectively, our findings define a novel function for Smad2 in regulation of the Cdh1-APC/SnoN cell-intrinsic pathway of axonal morphogenesis, and suggest that inhibition of Smad signaling may hold therapeutic potential in stimulating axonal growth after injury in the CNS.
轴突生长对于神经元连接的建立至关重要。E3泛素连接酶Cdh1-后期促进复合体(Cdh1-APC)及其底物转录调节因子SnoN形成了一条细胞内在途径,该途径协调哺乳动物大脑中的轴突形态发生。Cdh1-APC/SnoN途径在神经系统中是如何被调控的仍不清楚。在此,我们报告TGFβ调节的信号蛋白Smad2在调节神经元中的Cdh1-APC/SnoN途径中起关键作用。我们发现Smad2在发育中的大鼠小脑皮质的初级颗粒神经元中表达。Smad信号通路在神经元中基本处于激活状态。内源性Smad2被磷酸化,定位于细胞核,并在颗粒神经元中与内源性SnoN形成物理复合物。通过几种不同的方法抑制Smad信号,包括基因敲低Smad2,可刺激轴突生长。生化证据和遗传上位性分析表明,在轴突生长的控制中,Smad2在与Cdh1-APC的共同途径中位于SnoN的上游。值得注意的是,敲低Smad2也能克服成年大鼠髓磷脂抑制轴突生长的能力。总的来说,我们的研究结果确定了Smad2在调节轴突形态发生的Cdh1-APC/SnoN细胞内在途径中的新功能,并表明抑制Smad信号可能在刺激中枢神经系统损伤后轴突生长方面具有治疗潜力。