Gotardo Paulo F U, Martinez Aleix M
IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):2051-65. doi: 10.1109/TPAMI.2011.50. Epub 2011 Mar 10.
We address the classical computer vision problems of rigid and nonrigid structure from motion (SFM) with occlusion. We assume that the columns of the input observation matrix W describe smooth 2D point trajectories over time. We then derive a family of efficient methods that estimate the column space of W using compact parameterizations in the Discrete Cosine Transform (DCT) domain. Our methods tolerate high percentages of missing data and incorporate new models for the smooth time trajectories of 2D-points, affine and weak-perspective cameras, and 3D deformable shape. We solve a rigid SFM problem by estimating the smooth time trajectory of a single camera moving around the structure of interest. By considering a weak-perspective camera model from the outset, we directly compute euclidean 3D shape reconstructions without requiring postprocessing steps such as euclidean upgrade and bundle adjustment. Our results on real SFM data sets with high percentages of missing data compared positively to those in the literature. In nonrigid SFM, we propose a novel 3D shape trajectory approach that solves for the deformable structure as the smooth time trajectory of a single point in a linear shape space. A key result shows that, compared to state-of-the-art algorithms, our nonrigid SFM method can better model complex articulated deformation with higher frequency DCT components while still maintaining the low-rank factorization constraint. Finally, we also offer an approach for nonrigid SFM when W is presented with missing data.
我们解决了存在遮挡情况下的刚性和非刚性运动结构(SFM)这一经典计算机视觉问题。我们假设输入观测矩阵W的列描述了随时间变化的平滑二维点轨迹。然后,我们推导了一系列有效的方法,这些方法在离散余弦变换(DCT)域中使用紧凑参数化来估计W的列空间。我们的方法能够容忍高比例的缺失数据,并纳入了二维点、仿射和弱透视相机以及三维可变形形状的平滑时间轨迹的新模型。我们通过估计围绕感兴趣结构移动的单个相机的平滑时间轨迹来解决刚性SFM问题。从一开始就考虑弱透视相机模型,我们无需诸如欧几里得升级和束调整等后处理步骤,直接计算欧几里得三维形状重建。我们在具有高比例缺失数据的真实SFM数据集上的结果与文献中的结果相比表现良好。在非刚性SFM中,我们提出了一种新颖的三维形状轨迹方法,该方法将可变形结构求解为线性形状空间中单个点的平滑时间轨迹。一个关键结果表明,与现有算法相比,我们的非刚性SFM方法在保持低秩分解约束的同时,能够利用更高频率的DCT分量更好地对复杂的关节变形进行建模。最后,当W存在缺失数据时,我们还提供了一种非刚性SFM的方法。