Suppr超能文献

作为新型治疗和制药方法的大分子装置的病毒纳米颗粒。

Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches.

作者信息

Grasso Simone, Santi Luca

机构信息

Department of Biology, University of Rome Tor Vergata Rome, Italy.

出版信息

Int J Physiol Pathophysiol Pharmacol. 2010 Jul 6;2(2):161-178.

Abstract

Viral nanoparticles are molecular cages derived from the assembly of viral structural proteins. They bear several peculiar features as proper dimensions for nanoscale applications, size homogeneity, an intrinsic robustness, a large surface area to mass ratio and a defined, repetitive and symmetric macromolecular organization. A number of expression strategies, using various biological systems, efficiently enable the production of significant quantities of viral nanoparticles, which can be easily purified. Genetic engineering and in vitro chemical modification consent to manipulate of the outer and inner surface of these nanocages, allowing specific changes of the original physico-chemical and biological properties. Moreover, several studies have focused on the in vitro disassembly/reassembly and gating of viral nanoparticles, with the aim of encapsulating exogenous molecules inside and therefore improving their potential as containment delivery devices. These technological progresses have led research to a growing variety of applications in different fields such as biomedicine, pharmacology, separation science, catalytic chemistry, crop pest control and material science. In this review we will focus on the strategies used to modify the characteristics of viral nanoparticles and on their use in biomedicine and pharmacology.

摘要

病毒纳米颗粒是由病毒结构蛋白组装而成的分子笼。它们具有几个独特的特征,如适合纳米尺度应用的尺寸、大小均匀性、内在的稳定性、较大的表面积与质量比以及明确的、重复的和对称的大分子结构。许多利用各种生物系统的表达策略能够有效地大量生产病毒纳米颗粒,而且这些颗粒易于纯化。基因工程和体外化学修饰使得人们能够对这些纳米笼的内外表面进行操控,从而使它们原有的物理化学和生物学特性发生特定改变。此外,一些研究聚焦于病毒纳米颗粒的体外拆解/重新组装及门控,目的是将外源分子封装在内部,进而提高其作为封装递送装置的潜力。这些技术进步使得相关研究在生物医学、药理学、分离科学、催化化学、农作物害虫防治和材料科学等不同领域有了越来越多的应用。在这篇综述中,我们将重点关注用于改变病毒纳米颗粒特性的策略及其在生物医学和药理学中的应用。

相似文献

2
A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus.
Transgenic Res. 2013 Jun;22(3):519-35. doi: 10.1007/s11248-012-9663-6. Epub 2012 Oct 30.
3
Nanoparticles in biomedicine: new insights from plant viruses.
Curr Med Chem. 2013;20(28):3471-87. doi: 10.2174/09298673113209990035.
4
Prevention of microbial biofilms - the contribution of micro and nanostructured materials.
Curr Med Chem. 2014;21(29):3311. doi: 10.2174/0929867321666140304101314.
5
Manufacturing of non-viral protein nanocages for biotechnological and biomedical applications.
Front Bioeng Biotechnol. 2023 Jul 13;11:1200729. doi: 10.3389/fbioe.2023.1200729. eCollection 2023.
7
New Perspectives on Biomedical Applications of Iron Oxide Nanoparticles.
Curr Med Chem. 2018 Feb 12;25(4):540-555. doi: 10.2174/0929867324666170616102922.
8
Fabrication of nanoarchitectures templated by virus-based nanoparticles: strategies and applications.
Small. 2014 Jan 29;10(2):230-45. doi: 10.1002/smll.201301393. Epub 2013 Sep 1.
9
Engineering building blocks for self-assembling protein nanoparticles.
Microb Cell Fact. 2010 Dec 30;9:101. doi: 10.1186/1475-2859-9-101.
10
Nanoparticle-Protein Interactions: Therapeutic Approaches and Supramolecular Chemistry.
Acc Chem Res. 2017 Jun 20;50(6):1383-1390. doi: 10.1021/acs.accounts.7b00051. Epub 2017 May 8.

引用本文的文献

1
Application of Plant Viruses in Biotechnology, Medicine, and Human Health.
Viruses. 2021 Aug 26;13(9):1697. doi: 10.3390/v13091697.
2
Strategies for delivering therapeutics across the blood-brain barrier.
Nat Rev Drug Discov. 2021 May;20(5):362-383. doi: 10.1038/s41573-021-00139-y. Epub 2021 Mar 1.
3
Viral Nanoparticles: Cancer Vaccines and Immune Modulators.
Adv Exp Med Biol. 2021;1295:317-325. doi: 10.1007/978-3-030-58174-9_14.
4
Recent advances in nanotheranostics for triple negative breast cancer treatment.
J Exp Clin Cancer Res. 2019 Oct 28;38(1):430. doi: 10.1186/s13046-019-1443-1.
6
A potential nanobiotechnology platform based on infectious bursal disease subviral particles.
RSC Adv. 2012 Mar 7;2(5):1970-1978. doi: 10.1039/C2RA00857B. Epub 2012 Jan 9.
7
A new application of plant virus nanoparticles as drug delivery in breast cancer.
Tumour Biol. 2016 Jan;37(1):1229-36. doi: 10.1007/s13277-015-3867-3. Epub 2015 Aug 19.
9
N-glycosylation modification of plant-derived virus-like particles: an application in vaccines.
Biomed Res Int. 2014;2014:249519. doi: 10.1155/2014/249519. Epub 2014 May 25.
10
Using viruses as nanomedicines.
Br J Pharmacol. 2014 Sep;171(17):4001-9. doi: 10.1111/bph.12662.

本文引用的文献

1
Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors.
Angew Chem Int Ed Engl. 1998 Nov 2;37(20):2754-2794. doi: 10.1002/(SICI)1521-3773(19981102)37:20<2754::AID-ANIE2754>3.0.CO;2-3.
2
Cross-priming in health and disease.
Nat Rev Immunol. 2010 Jun;10(6):403-14. doi: 10.1038/nri2780.
3
Ferritin in the field of nanodevices.
Biochim Biophys Acta. 2010 Aug;1800(8):846-57. doi: 10.1016/j.bbagen.2010.03.005. Epub 2010 Mar 12.
4
Potato virus X as a novel platform for potential biomedical applications.
Nano Lett. 2010 Jan;10(1):305-12. doi: 10.1021/nl9035753.
5
Induction of type I interferon by RNA viruses: cellular receptors and their substrates.
Amino Acids. 2010 May;38(5):1283-99. doi: 10.1007/s00726-009-0374-0. Epub 2009 Nov 1.
6
The development of nanobodies for therapeutic applications.
Curr Opin Investig Drugs. 2009 Nov;10(11):1212-24.
7
Assembly of hybrid bacteriophage Qbeta virus-like particles.
Biochemistry. 2009 Dec 1;48(47):11155-7. doi: 10.1021/bi901306p.
8
Evaluation of specific delivery of chimeric phi29 pRNA/siRNA nanoparticles to multiple tumor cells.
Mol Biosyst. 2009 Nov;5(11):1361-8. doi: 10.1039/b903428e. Epub 2009 Jul 27.
9
Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice.
Vaccine. 2009 Aug 13;27(37):5069-76. doi: 10.1016/j.vaccine.2009.06.045. Epub 2009 Jun 27.
10
Synthetic methylated CpG ODNs are potent in vivo adjuvants when delivered in liposomal nanoparticles.
Int Immunol. 2009 Jul;21(7):757-67. doi: 10.1093/intimm/dxp044. Epub 2009 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验