Suzhou Key Laboratory of Nanobiomedical Characterization, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
Small. 2014 Jan 29;10(2):230-45. doi: 10.1002/smll.201301393. Epub 2013 Sep 1.
Biomolecular nanostructures in nature are drawing increasing interests in the field of materials sciences. As a typical group of them, virus-based nanoparticles (VNPs), which are nanocages or nanorods assembled from capsid proteins of viruses, have been widely exploited as templates to guide the fabrication of complex nanoarchitectures (NAs), because of their appropriate sizes (ca. 20-200 nm), homogeneity, addressable functionalization, facile modification via chemical and genetic routes, and convenient preparation. Foreign materials can be positioned in the inner cavity or on the outer surface of VNPs, through either direct synthesis or assembling preformed nanomaterials. Simultaneous use of the inner and outer space of VNPs facilitates integration of multiple functionalities in a single NA. This review briefly summarizes the strategies for fabrication of NAs templated by VNPs and wide applications of these NAs in fields of catalysis, energy, biomedicine, and nanophotonics, etc.
自然界中的生物分子纳米结构在材料科学领域引起了越来越多的关注。作为其中的一个典型群体,基于病毒的纳米粒子(VNPs),由病毒衣壳蛋白组装而成的纳米笼或纳米棒,已被广泛用作指导复杂纳米结构(NAs)制造的模板,因为它们具有适当的尺寸(约 20-200nm)、均一性、可寻址功能化、通过化学和遗传途径进行简便修饰以及方便的制备。通过直接合成或组装预先制备的纳米材料,可以将外来材料定位在 VNPs 的内腔或外表面上。同时利用 VNPs 的内外空间有助于将多种功能集成到单个 NA 中。本文简要总结了基于 VNPs 制造 NAs 的策略以及这些 NAs 在催化、能源、生物医学和纳米光子学等领域的广泛应用。
Biotechnol J. 2018-1-24
Nanotheranostics. 2017-8-18
ACS Appl Mater Interfaces. 2015-5-15
Chem Soc Rev. 2012-8-10
Biotechnol Bioeng. 2011-9-21
J Am Chem Soc. 2011-11-23
Subcell Biochem. 2024
Theranostics. 2024-11-4
Nanomaterials (Basel). 2023-9-7
Int J Mol Sci. 2022-12-8
Appl Microbiol Biotechnol. 2021-11