Department of Chemistry, Stanford University, Stanford, California 94305, USA.
J Chem Phys. 2011 Mar 7;134(9):094103. doi: 10.1063/1.3559452.
Triatomic transition-metal oxides in the "inserted dioxide" (O-M-O) structure represent one of the simplest examples of systems that undergo qualitative geometrical changes via subtle electronic-structure modulation. We consider here three transition-metal dioxide molecules (MO(2) where M = Mn, Fe, or Co), for which the equilibrium structural (e.g., bent or linear geometry) and electronic (e.g., spin or symmetry) properties have been challenging to assign both theoretically and experimentally. Augmenting a standard density-functional theory (DFT) approach with a Hubbard term (DFT+U) occasionally overlocalizes the 3d manifold, leading to an incorrect bond elongation and, in turn, poor equilibrium geometries for MO(2) molecules, while preserving good spin-state splittings. Proper description of both geometry and energetics for these molecules is recovered; however, through either calculating DFT+U relaxations at fixed M-O bond lengths or by inclusion of an intersite interaction term V that favors M(3d)-O(2p) interactions. In this latter case, both U and V are calculated fully from first-principles and are not fitting parameters. Finally, we identify an approach that more accurately determines the Hubbard U over a coordinate in which the covalent character of bonding varies.
在“插入二氧化物”(O-M-O)结构中的三原子过渡金属氧化物代表了通过微妙的电子结构调制经历定性几何变化的最简单系统之一。我们在这里考虑三个过渡金属二氧化物分子(MO(2),其中 M = Mn、Fe 或 Co),对于这些分子,平衡结构(例如,弯曲或线性几何)和电子(例如,自旋或对称性)性质在理论和实验上都难以分配。用 Hubbard 项(DFT+U)增强标准密度泛函理论(DFT)方法偶尔会过度局部化 3d 流形,导致键伸长不正确,从而导致 MO(2)分子的平衡几何形状不佳,同时保持良好的自旋态分裂。通过计算固定 M-O 键长的 DFT+U 弛豫或包含有利于 M(3d)-O(2p)相互作用的相互作用项 V,可以恢复这些分子的几何形状和能量的正确描述。在后一种情况下,U 和 V 都是完全从第一性原理计算得出的,而不是拟合参数。最后,我们确定了一种方法,该方法可以更准确地确定在键合共价性质随坐标变化的情况下的 Hubbard U。