Suppr超能文献

金属氮化物催化剂的化学循环:用于能量存储的低压氨合成

Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage.

作者信息

Michalsky R, Avram A M, Peterson B A, Pfromm P H, Peterson A A

机构信息

Department of Chemical Engineering , Kansas State University , 1005 Durland Hall , Manhattan , Kansas 66506 , USA . Email:

School of Engineering , Brown University , 184 Hope Street , Providence , Rhode Island 02912 , USA.

出版信息

Chem Sci. 2015 Jul 1;6(7):3965-3974. doi: 10.1039/c5sc00789e. Epub 2015 May 1.

Abstract

The activity of many heterogeneous catalysts is limited by strong correlations between activation energies and adsorption energies of reaction intermediates. Although the reaction is thermodynamically favourable at ambient temperature and pressure, the catalytic synthesis of ammonia (NH), a fertilizer and chemical fuel, from N and H requires some of the most extreme conditions of the chemical industry. We demonstrate how ammonia can be produced at ambient pressure from air, water, and concentrated sunlight as renewable source of process heat nitrogen reduction with a looped metal nitride, followed by separate hydrogenation of the lattice nitrogen into ammonia. Separating ammonia synthesis into two reaction steps introduces an additional degree of freedom when designing catalysts with desirable activation and adsorption energies. We discuss the hydrogenation of alkali and alkaline earth metal nitrides and the reduction of transition metal nitrides to outline a promoting role of lattice hydrogen in ammonia evolution. This is rationalized electronic structure calculations with the activity of nitrogen vacancies controlling the redox-intercalation of hydrogen and the formation and hydrogenation of adsorbed nitrogen species. The predicted trends are confirmed experimentally with evolution of 56.3, 80.7, and 128 μmol NH per mol metal per min at 1 bar and above 550 °C reduction of MnN to MnN and hydrogenation of CaN and SrN to CaNH and SrH, respectively.

摘要

许多多相催化剂的活性受到反应中间体活化能和吸附能之间强相关性的限制。尽管该反应在环境温度和压力下在热力学上是有利的,但从氮气和氢气催化合成氨(NH₃),一种肥料和化学燃料,需要一些化学工业中最极端的条件。我们展示了如何在常压下利用空气、水和集中太阳光作为可再生的工艺热氮还原源,通过环状金属氮化物进行氮还原,然后将晶格氮单独氢化为氨来生产氨。将氨合成分为两个反应步骤在设计具有理想活化能和吸附能的催化剂时引入了额外的自由度。我们讨论了碱金属和碱土金属氮化物的氢化以及过渡金属氮化物的还原,以概述晶格氢在氨析出中的促进作用。这通过电子结构计算得到了合理化,其中氮空位的活性控制着氢的氧化还原嵌入以及吸附氮物种的形成和氢化。预测的趋势在实验中得到了证实,在1巴和高于550℃的条件下,每摩尔金属每分钟分别有56.3、80.7和128微摩尔氨的析出,分别是MnN还原为MnN以及CaN和SrN氢化为CaNH和SrH。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验