Institute of Condensed Matter & Nanosciences, Université catholique de Louvain, Croix du Sud 2/18, B-1348 Louvain-la-Neuve, Belgium.
Nanomedicine (Lond). 2011 Feb;6(2):395-403. doi: 10.2217/nnm.10.151.
Progress in nanomedicine relies on the development of advanced tools for imaging and manipulating biological systems on the nanoscale. Atomic force microscopy (AFM) techniques have emerged as a powerful platform for analyzing the structure, properties and functions of microbial pathogens. AFM imaging enables researchers to observe microbial cell walls in solution and at high resolution, and to monitor their remodeling upon interaction with drugs. In addition, single-molecule force spectroscopy analyzes the localization, mechanics and interactions of the individual cell wall constituents, thereby contributing to elucidate the molecular bases of cell adhesion (nanoadhesome) and mechanosensing (nanosensosome). In the future, AFM-based nanoscopy should have an important impact on nanomedicine, particularly for understanding microbe-drug and microbe-host interactions, and for developing new antimicrobial strategies.
纳米医学的进展依赖于开发用于在纳米尺度上成像和操纵生物系统的先进工具。原子力显微镜(AFM)技术已成为分析微生物病原体的结构、性质和功能的强大平台。AFM 成像使研究人员能够观察溶液中微生物细胞壁的形态,并以高分辨率进行观察,还可以监测它们与药物相互作用时的重塑过程。此外,单分子力谱分析了单个细胞壁成分的定位、力学和相互作用,从而有助于阐明细胞黏附(纳米黏合体)和机械感应(纳米感应体)的分子基础。未来,基于 AFM 的纳米显微镜应该对纳米医学产生重要影响,特别是对于理解微生物-药物和微生物-宿主的相互作用,以及开发新的抗菌策略。