Suppr超能文献

利用近场纳米显微镜对细胞表面进行单分子成像。

Single-molecule imaging of cell surfaces using near-field nanoscopy.

机构信息

Institute for Biophysics, Christian Doppler Laboratory of Nanoscopic Methods in Biophysics, Johannes Kepler University Linz, Altenbergerstrasse 69, A-4040 Linz, Austria.

出版信息

Acc Chem Res. 2012 Mar 20;45(3):327-36. doi: 10.1021/ar2001167. Epub 2011 Oct 12.

Abstract

Living cells use surface molecules such as receptors and sensors to acquire information about and to respond to their environments. The cell surface machinery regulates many essential cellular processes, including cell adhesion, tissue development, cellular communication, inflammation, tumor metastasis, and microbial infection. These events often involve multimolecular interactions occurring on a nanometer scale and at very high molecular concentrations. Therefore, understanding how single-molecules localize, assemble, and interact on the surface of living cells is an important challenge and a difficult one to address because of the lack of high-resolution single-molecule imaging techniques. In this Account, we show that atomic force microscopy (AFM) and near-field scanning optical microscopy (NSOM) provide unprecedented possibilities for mapping the distribution of single molecules on the surfaces of cells with nanometer spatial resolution, thereby shedding new light on their highly sophisticated functions. For single-molecule recognition imaging by AFM, researchers label the tip with specific antibodies or ligands and detect molecular recognition signals on the cell surface using either adhesion force or dynamic recognition force mapping. In single-molecule NSOM, the tip is replaced by an optical fiber with a nanoscale aperture. As a result, topographic and optical images are simultaneously generated, revealing the spatial distribution of fluorescently labeled molecules. Recently, researchers have made remarkable progress in the application of near-field nanoscopy to image the distribution of cell surface molecules. Those results have led to key breakthroughs: deciphering the nanoscale architecture of bacterial cell walls; understanding how cells assemble surface receptors into nanodomains and modulate their functional state; and understanding how different components of the cell membrane (lipids, proteins) assemble and communicate to confer efficient functional responses upon cell activation. We anticipate that the next steps in the evolution of single-molecule near-field nanoscopy will involve combining single-molecule imaging with single-molecule force spectroscopy to simultaneously measure the localization, elasticity, and interactions of cell surface molecules. In addition, progress in high-speed AFM should allow researchers to image single cell surface molecules at unprecedented temporal resolution. In parallel, exciting advances in the fields of photonic antennas and plasmonics may soon find applications in cell biology, enabling true nanoimaging and nanospectroscopy of individual molecules in living cells.

摘要

活细胞利用表面分子(如受体和传感器)来获取关于其环境的信息并对其做出响应。细胞表面机械调节许多基本的细胞过程,包括细胞黏附、组织发育、细胞通讯、炎症、肿瘤转移和微生物感染。这些事件通常涉及发生在纳米尺度上的多分子相互作用和非常高的分子浓度。因此,了解单分子在活细胞表面的定位、组装和相互作用是一个重要的挑战,也是一个难以解决的挑战,因为缺乏高分辨率的单分子成像技术。在本综述中,我们展示了原子力显微镜(AFM)和近场扫描光学显微镜(NSOM)为在纳米空间分辨率下绘制细胞表面单分子分布提供了前所未有的可能性,从而为其高度复杂的功能提供了新的认识。对于 AFM 的单分子识别成像,研究人员用特定的抗体或配体标记针尖,并使用粘附力或动态识别力映射来检测细胞表面的分子识别信号。在单分子 NSOM 中,针尖被带有纳米级孔径的光纤所取代。结果,同时生成形貌和光学图像,揭示了荧光标记分子的空间分布。最近,研究人员在将近场纳米显微镜应用于细胞表面分子分布成像方面取得了显著进展。这些结果带来了关键的突破:解析了细菌细胞壁的纳米结构;理解了细胞如何将表面受体组装成纳米域并调节其功能状态;以及理解了细胞膜的不同成分(脂质、蛋白质)如何组装和通讯,以在细胞激活时赋予有效的功能响应。我们预计,单分子近场纳米显微镜发展的下一步将涉及将单分子成像与单分子力谱学相结合,以同时测量细胞表面分子的定位、弹性和相互作用。此外,高速 AFM 的进展将使研究人员能够以前所未有的时间分辨率对单个细胞表面分子进行成像。与此同时,光子天线和等离子体领域的令人兴奋的进展可能很快在细胞生物学中得到应用,从而能够对活细胞中的单个分子进行真正的纳米成像和纳米光谱学研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验