Suppr超能文献

MnSOD 缺乏会导致氧化应激增加和线粒体功能下降,但不会导致衰老过程中的肌肉萎缩。

MnSOD deficiency results in elevated oxidative stress and decreased mitochondrial function but does not lead to muscle atrophy during aging.

机构信息

Department of Physiology, University of Texas Health Science Center at San Antonio, USA.

出版信息

Aging Cell. 2011 Jun;10(3):493-505. doi: 10.1111/j.1474-9726.2011.00695.x. Epub 2011 Apr 5.

Abstract

In a previous study, we reported that a deficiency in MnSOD activity (approximately 80% reduction) targeted to type IIB skeletal muscle fibers was sufficient to elevate oxidative stress and to reduce muscle function in young adult mice (TnIFastCreSod2(fl/fl) mice). In this study, we used TnIFastCreSod2(fl/fl) mice to examine the effect of elevated oxidative stress on mitochondrial function and to test the hypothesis that elevated oxidative stress and decreased mitochondrial function over the lifespan of the TnIFastCreSod2(fl/fl) mice would be sufficient to accelerate muscle atrophy associated with aging. We found that mitochondrial function is reduced in both young and old TnIFastCreSod2(fl/fl) mice, when compared with control mice. Complex II activity is reduced by 47% in young and by approximately 90% in old TnIFastCreSod2(fl/fl) mice, and was found to be associated with reduced levels of the catalytic subunits for complex II, SDHA and SDHB. Complex II-linked mitochondrial respiration is reduced by approximately 70% in young TnIFastCreSod2(fl/fl) mice. Complex II-linked mitochondrial Adenosine-Tri-Phosphate (ATP) production is reduced by 39% in young and was found to be almost completely absent in old TnIFastCreSod2(fl/fl) mice. Furthermore, in old TnIFastCreSod2(fl/fl) mice, aconitase activity is almost completely abolished; mitochondrial superoxide release remains > 2-fold elevated; and oxidative damage (measured as F(2) - isoprostanes) is increased by 30% relative to age-matched controls. These data show that despite elevated skeletal muscle-specific mitochondrial oxidative stress, oxidative damage, and complex II-linked mitochondrial dysfunction, age-related muscle atrophy was not accelerated in old TnIFastCreSod2(fl/fl) mice, suggesting mitochondrial oxidative stress may not be causal for age-related muscle atrophy.

摘要

在之前的研究中,我们报道了 IIB 型骨骼肌纤维中 MnSOD 活性(约 80%降低)的缺陷足以升高氧化应激并降低年轻成年小鼠的肌肉功能(TnIFastCreSod2(fl/fl) 小鼠)。在这项研究中,我们使用 TnIFastCreSod2(fl/fl) 小鼠来检查氧化应激升高对线粒体功能的影响,并检验假设,即 TnIFastCreSod2(fl/fl) 小鼠寿命中氧化应激升高和线粒体功能降低足以加速与衰老相关的肌肉萎缩。我们发现,与对照小鼠相比,年轻和老年 TnIFastCreSod2(fl/fl) 小鼠的线粒体功能均降低。年轻的 TnIFastCreSod2(fl/fl) 小鼠中复合物 II 活性降低 47%,而老年小鼠中复合物 II 活性降低约 90%,并且发现与复合物 II 的催化亚基 SDHA 和 SDHB 水平降低有关。年轻的 TnIFastCreSod2(fl/fl) 小鼠中复合物 II 相关的线粒体呼吸降低约 70%。年轻的 TnIFastCreSod2(fl/fl) 小鼠中复合物 II 相关的线粒体三磷酸腺苷 (ATP) 生成降低 39%,并且发现老年 TnIFastCreSod2(fl/fl) 小鼠中几乎完全不存在。此外,在老年 TnIFastCreSod2(fl/fl) 小鼠中,顺乌头酸酶活性几乎完全被废除;线粒体超氧化物释放仍升高 2 倍以上;氧化损伤(以 F(2) -异前列烷表示)相对于年龄匹配的对照增加了 30%。这些数据表明,尽管骨骼肌特异性线粒体氧化应激、氧化损伤和复合物 II 相关的线粒体功能障碍升高,但老年 TnIFastCreSod2(fl/fl) 小鼠中与年龄相关的肌肉萎缩并未加速,这表明线粒体氧化应激可能不是与年龄相关的肌肉萎缩的原因。

相似文献

2
3
Dietary restriction attenuates age-associated muscle atrophy by lowering oxidative stress in mice even in complete absence of CuZnSOD.
Aging Cell. 2012 Oct;11(5):770-82. doi: 10.1111/j.1474-9726.2012.00843.x. Epub 2012 Aug 2.
4
Alterations in mitochondrial function, hydrogen peroxide release and oxidative damage in mouse hind-limb skeletal muscle during aging.
Mech Ageing Dev. 2006 Mar;127(3):298-306. doi: 10.1016/j.mad.2005.11.004. Epub 2006 Jan 6.
5
Skeletal muscle weakness due to deficiency of CuZn-superoxide dismutase is associated with loss of functional innervation.
Am J Physiol Regul Integr Comp Physiol. 2011 Nov;301(5):R1400-7. doi: 10.1152/ajpregu.00093.2011. Epub 2011 Sep 7.
6
Increased mitochondrial matrix-directed superoxide production by fatty acid hydroperoxides in skeletal muscle mitochondria.
Free Radic Biol Med. 2011 Mar 1;50(5):592-601. doi: 10.1016/j.freeradbiomed.2010.12.014. Epub 2010 Dec 21.
7
Asymmetric superoxide release inside and outside the mitochondria in skeletal muscle under conditions of aging and disuse.
J Appl Physiol (1985). 2010 Oct;109(4):1133-9. doi: 10.1152/japplphysiol.00174.2010. Epub 2010 Aug 5.
8
Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels.
Biochem Biophys Res Commun. 2012 Jun 8;422(3):515-21. doi: 10.1016/j.bbrc.2012.05.055. Epub 2012 May 18.
9
Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production.
Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1159-68. doi: 10.1152/ajpregu.00767.2006. Epub 2007 Jun 20.

引用本文的文献

1
Overexpression of thioredoxin-2 attenuates age-related muscle loss by suppressing mitochondrial oxidative stress and apoptosis.
JCSM Rapid Commun. 2022 Jan-Jun;5(1):130-145. doi: 10.1002/rco2.57. Epub 2022 Jan 14.
2
Mechanisms of mitochondrial reactive oxygen species action in bone mesenchymal cells.
bioRxiv. 2025 Mar 25:2025.03.24.643319. doi: 10.1101/2025.03.24.643319.
4
Pregnancy in obese women and mechanisms of increased cardiovascular risk in offspring.
Eur Heart J. 2024 Dec 23;45(48):5127-5145. doi: 10.1093/eurheartj/ehae671.
5
Mitochondrial bioenergetics are not associated with myofibrillar protein synthesis rates.
J Cachexia Sarcopenia Muscle. 2024 Oct;15(5):1811-1822. doi: 10.1002/jcsm.13532. Epub 2024 Jul 15.
8
Cytosolic adaptation to mitochondria-induced proteostatic stress causes progressive muscle wasting.
iScience. 2021 Dec 31;25(1):103715. doi: 10.1016/j.isci.2021.103715. eCollection 2022 Jan 21.
9
Neuron-specific mitochondrial oxidative stress results in epilepsy, glucose dysregulation and a striking astrocyte response.
Neurobiol Dis. 2021 Oct;158:105470. doi: 10.1016/j.nbd.2021.105470. Epub 2021 Aug 8.
10
The ketogenic diet preserves skeletal muscle with aging in mice.
Aging Cell. 2021 Apr;20(4):e13322. doi: 10.1111/acel.13322. Epub 2021 Mar 6.

本文引用的文献

1
Oxidative stress in skeletal muscle causes severe disturbance of exercise activity without muscle atrophy.
Free Radic Biol Med. 2010 May 1;48(9):1252-62. doi: 10.1016/j.freeradbiomed.2010.02.011. Epub 2010 Feb 13.
2
4
Resistance to Ca2+-induced opening of the permeability transition pore differs in mitochondria from glycolytic and oxidative muscles.
Am J Physiol Regul Integr Comp Physiol. 2008 Aug;295(2):R659-68. doi: 10.1152/ajpregu.90357.2008. Epub 2008 May 21.
5
Fatty acid oxidation in cardiac and skeletal muscle mitochondria is unaffected by deletion of CD36.
Arch Biochem Biophys. 2007 Nov 15;467(2):234-8. doi: 10.1016/j.abb.2007.08.020. Epub 2007 Aug 29.
6
Denervation-induced skeletal muscle atrophy is associated with increased mitochondrial ROS production.
Am J Physiol Regul Integr Comp Physiol. 2007 Sep;293(3):R1159-68. doi: 10.1152/ajpregu.00767.2006. Epub 2007 Jun 20.
7
Messenger RNA oxidation is an early event preceding cell death and causes reduced protein expression.
FASEB J. 2007 Sep;21(11):2753-64. doi: 10.1096/fj.07-8200com. Epub 2007 May 11.
8
Mitochondrial dysfunction: impact on exercise performance and cellular aging.
Exerc Sport Sci Rev. 2007 Apr;35(2):43-9. doi: 10.1249/JES.0b013e31803e88e9.
9
Oxidative stress causes heart failure with impaired mitochondrial respiration.
J Biol Chem. 2006 Nov 3;281(44):33789-801. doi: 10.1074/jbc.M602118200. Epub 2006 Sep 6.
10
Investigation of drug-induced mitochondrial toxicity using fluorescence-based oxygen-sensitive probes.
Toxicol Sci. 2006 Jul;92(1):186-200. doi: 10.1093/toxsci/kfj208. Epub 2006 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验