Suppr超能文献

量子气体在纳米孔附近吸附的异常有效维度。

Anomalous effective dimensionality of quantum gas adsorption near nanopores.

机构信息

Physics Department, Pennsylvania State University, 104 Davey Laboratory, University Park, PA 16802, USA.

出版信息

J Phys Condens Matter. 2010 Aug 25;22(33):334206. doi: 10.1088/0953-8984/22/33/334206. Epub 2010 Aug 4.

Abstract

Three problems involving quasi-one-dimensional (1D) ideal gases are discussed. The simplest problem involves quantum particles localized within the 'groove', a quasi-1D region created by two adjacent, identical and parallel nanotubes. At low temperature (T), the transverse motion of the adsorbed gas, in the plane perpendicular to the axes of the tubes, is frozen out. Then, the low T heat capacity C(T) of N particles is that of a 1D classical gas: C()(T) = C(T)/(Nk(B)) --> 1/2. The dimensionless heat capacity C() increases when T ≥ 0.1T(x, y) (transverse excitation temperatures), asymptoting at C() = 2.5. The second problem involves a gas localized between two nearly parallel, co-planar nanotubes, with small divergence half-angle γ. In this case, too, the transverse motion does not contribute to C(T) at low T, leaving a problem of a gas of particles in a 1D harmonic potential (along the z axis, midway between the tubes). Setting ω(z) as the angular frequency of this motion, for T ≥ τ(z) ≡ ω(z)ħ/k(B), the behavior approaches that of a 2D classical gas, C() = 1; one might have expected instead C() = 1/2, as in the groove problem, since the limit γ ≡ 0 is 1D. For T << τ(z), the thermal behavior is exponentially activated, C(*) ∼ (τ(z)/T)(2)e(-τ(z)/T). At higher T (T ≈ ε(y)/k(B) ≡ τ(y) >> τ(z)), motion is excited in the y direction, perpendicular to the plane of nanotubes, resulting in thermal behavior (C() = 7/4) corresponding to a gas in 7/2 dimensions, while at very high T (T > ħω(x)/k(B) ≡ τ(x) >> τ(y)), the behavior becomes that of a D = 11/2 system. The third problem is that of a gas of particles, e.g. (4)He, confined in the interstitial region between four square parallel pores. The low T behavior found in this case is again surprising--that of a 5D gas.

摘要

讨论了三个涉及准一维(1D)理想气体的问题。最简单的问题涉及到量子粒子在“凹槽”内的局域化,凹槽是由两个相邻、相同且平行的纳米管形成的准一维区域。在低温(T)下,吸附气体在垂直于管轴的平面内的横向运动被冻结。此时,N 个粒子的低温热容量 C(T)是一维经典气体的热容量:C()(T) = C(T)/(Nk(B)) --> 1/2。当 T ≥ 0.1T(x, y)(横向激发温度)时,无量纲热容量 C()增加,渐近于 C() = 2.5。第二个问题涉及到局域在两个几乎平行、共面纳米管之间的气体,其半发散角γ很小。在这种情况下,低温下的横向运动也不会对 C(T)做出贡献,从而留下一个关于在一维简谐势中运动的粒子气体的问题(沿着 z 轴,位于两个管子之间的中间位置)。将ω(z)设置为该运动的角频率,对于 T ≥ τ(z) ≡ ω(z)ħ/k(B),行为接近二维经典气体的行为,C() = 1;人们可能期望的是 C() = 1/2,就像在凹槽问题中一样,因为极限 γ ≡ 0 是一维的。对于 T << τ(z),热行为是指数激活的,C(*) ∼ (τ(z)/T)(2)e(-τ(z)/T)。在更高的温度(T ≈ ε(y)/k(B) ≡ τ(y) >> τ(z)),在垂直于纳米管平面的 y 方向上激发运动,导致热行为(C() = 7/4)对应于 7/2 维的气体,而在非常高的温度(T > ħω(x)/k(B) ≡ τ(x) >> τ(y)),行为变得像 D = 11/2 系统。第三个问题是粒子气体,例如(4)He,被限制在四个平行正方形孔之间的间隙区域内。在这种情况下发现的低温行为再次令人惊讶——是一个 5D 气体。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验