Fakultät für Physik and Center for Computational Materials Science, Universität Wien, Sensengasse 8/12, A-1090 Wien, Austria.
J Phys Condens Matter. 2010 Sep 29;22(38):384205. doi: 10.1088/0953-8984/22/38/384205. Epub 2010 Sep 7.
During the last 20 years computer simulations based on a quantum-mechanical description of the interactions between electrons and atomic nuclei have developed an increasingly important impact on materials science, not only in promoting a deeper understanding of the fundamental physical phenomena, but also enabling the computer-assisted design of materials for future technologies. The backbone of atomic-scale computational materials science is density-functional theory (DFT) which allows us to cast the intractable complexity of electron-electron interactions into the form of an effective single-particle equation determined by the exchange-correlation functional. Progress in DFT-based calculations of the properties of materials and of simulations of processes in materials depends on: (1) the development of improved exchange-correlation functionals and advanced post-DFT methods and their implementation in highly efficient computer codes, (2) the development of methods allowing us to bridge the gaps in the temperature, pressure, time and length scales between the ab initio calculations and real-world experiments and (3) the extension of the functionality of these codes, permitting us to treat additional properties and new processes. In this paper we discuss the current status of techniques for performing quantum-based simulations on materials and present some illustrative examples of applications to complex quasiperiodic alloys, cluster-support interactions in microporous acid catalysts and magnetic nanostructures.
在过去的 20 年中,基于电子和原子核相互作用的量子力学描述的计算机模拟在材料科学中产生了越来越重要的影响,不仅促进了对基本物理现象的更深入理解,而且还能够辅助设计未来技术所需的材料。原子尺度计算材料科学的基础是密度泛函理论(DFT),它使我们能够将电子-电子相互作用的棘手复杂性转化为由交换相关泛函确定的有效单粒子方程的形式。基于 DFT 的材料性质计算和材料过程模拟的进展取决于:(1)改进的交换相关泛函和先进的后 DFT 方法的发展及其在高效计算机代码中的实现,(2)发展方法以弥合从头计算和实际实验之间的温度、压力、时间和长度尺度上的差距,以及(3)这些代码功能的扩展,使我们能够处理其他性质和新过程。本文讨论了目前在材料上进行基于量子的模拟的技术现状,并展示了一些复杂准周期合金、微孔酸催化剂中簇支撑相互作用和磁性纳米结构的应用实例。