Suppr超能文献

螺旋大分子的电荷重归一化。

Charge renormalization of helical macromolecules.

机构信息

Max-Planck Institute für Physik Komplexer Systeme, Nöthnizter Strasse 38, Dresden D-01187, Germany.

出版信息

J Phys Condens Matter. 2010 Oct 20;22(41):414101. doi: 10.1088/0953-8984/22/41/414101. Epub 2010 Sep 30.

Abstract

Some time ago a theory of electrostatic interaction between helical macromolecules was proposed (Kornyshev and Leikin 1997 J. Chem. Phys. 107 3656): the Kornyshev-Leikin (KL) theory. We place this theory on a more rigorous statistical mechanical grounding, starting from the free energy that can be derived from a grand partition function. We see that the long range behaviour of the force is indeed given by the KL theory, no matter whether the distributions of 'condensed' ionic charge are at the surface of the macromolecule or extend away from it. Thus, for the limiting behaviour, we need only self-consistently calculate the distribution of the condensed fraction of ions for a single macro-ion. This distribution can be related back to interaction parameters: KL parameters. Furthermore, we are able to see within the formalism where corrections due to the hard core radius of the ion enter. For the adjustment of the 'condensed' ions, we show an expression for the leading order contribution, as well as relevant decay lengths. As a demonstration of the theoretical 'machinery', as well as a study of qualitative effects, we calculate the KL parameters in one instance. We use a DNA-like surface charge distribution, where a fraction of the ions are assumed to be bound in the grooves at the surface of a DNA molecule, whereas the rest of the charge distribution is calculated self-consistently. Also, the electrostatic contribution to the counter-ion binding potentials that ions experience within the grooves can be calculated.

摘要

不久前,提出了一种螺旋大分子之间静电相互作用的理论(Kornyshev 和 Leikin 1997 J. Chem. Phys. 107 3656):Kornyshev-Leikin(KL)理论。我们从可以从巨配分函数推导出的自由能出发,将该理论置于更严格的统计力学基础上。我们看到,无论“凝聚”离子电荷的分布是在大分子表面还是远离它,力的长程行为确实是由 KL 理论给出的。因此,对于极限行为,我们只需要自洽地计算单个大分子离子中凝聚离子的分数分布。该分布可以与相互作用参数相关联:KL 参数。此外,我们能够在离子硬球半径进入的形式主义中看到修正的位置。对于“凝聚”离子的调整,我们展示了一个主要贡献的表达式,以及相关的衰减长度。作为理论“机制”的演示,以及定性效应的研究,我们在一个实例中计算了 KL 参数。我们使用类似于 DNA 的表面电荷分布,其中假设一部分离子结合在 DNA 分子表面的凹槽中,而其余的电荷分布则自洽地计算。此外,还可以计算离子在凹槽中经历的抗衡离子结合势的静电贡献。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验