Suppr超能文献

从果蝇有丝分裂基因推断出的特征可预测乳腺癌患者的生存情况。

A signature inferred from Drosophila mitotic genes predicts survival of breast cancer patients.

机构信息

Molecular Biotechnology Center and Department of Genetics, Biology and Biochemistry, University of Turin, Turin, Italy.

出版信息

PLoS One. 2011 Feb 28;6(2):e14737. doi: 10.1371/journal.pone.0014737.

Abstract

INTRODUCTION

The classification of breast cancer patients into risk groups provides a powerful tool for the identification of patients who will benefit from aggressive systemic therapy. The analysis of microarray data has generated several gene expression signatures that improve diagnosis and allow risk assessment. There is also evidence that cell proliferation-related genes have a high predictive power within these signatures.

METHODS

We thus constructed a gene expression signature (the DM signature) using the human orthologues of 108 Drosophila melanogaster genes required for either the maintenance of chromosome integrity (36 genes) or mitotic division (72 genes).

RESULTS

The DM signature has minimal overlap with the extant signatures and is highly predictive of survival in 5 large breast cancer datasets. In addition, we show that the DM signature outperforms many widely used breast cancer signatures in predictive power, and performs comparably to other proliferation-based signatures. For most genes of the DM signature, an increased expression is negatively correlated with patient survival. The genes that provide the highest contribution to the predictive power of the DM signature are those involved in cytokinesis.

CONCLUSION

This finding highlights cytokinesis as an important marker in breast cancer prognosis and as a possible target for antimitotic therapies.

摘要

简介

将乳腺癌患者分类为风险组为识别将从强化系统治疗中获益的患者提供了有力工具。微阵列数据分析生成了几种基因表达特征,可改善诊断并允许风险评估。还有证据表明,细胞增殖相关基因在这些特征中具有很高的预测能力。

方法

因此,我们使用 108 个需要维持染色体完整性(36 个基因)或有丝分裂分裂(72 个基因)的黑腹果蝇(Drosophila melanogaster)的人类直系同源物构建了一个基因表达特征(DM 特征)。

结果

DM 特征与现有特征的重叠最小,并且在 5 个大型乳腺癌数据集的生存预测中具有高度的预测性。此外,我们表明,DM 特征在预测能力方面优于许多广泛使用的乳腺癌特征,并且与其他基于增殖的特征相当。对于 DM 特征的大多数基因,表达增加与患者生存呈负相关。对 DM 特征预测能力贡献最大的基因是那些参与胞质分裂的基因。

结论

这一发现强调了胞质分裂作为乳腺癌预后的一个重要标志物,并可能成为抗有丝分裂治疗的目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dcd/3046113/7f271efe4973/pone.0014737.g001.jpg

相似文献

1
A signature inferred from Drosophila mitotic genes predicts survival of breast cancer patients.
PLoS One. 2011 Feb 28;6(2):e14737. doi: 10.1371/journal.pone.0014737.
3
A 4-microRNA signature predicts lymph node metastasis and prognosis in breast cancer.
Hum Pathol. 2018 Jun;76:122-132. doi: 10.1016/j.humpath.2018.03.010. Epub 2018 Mar 17.
4
Genes and functions from breast cancer signatures.
BMC Cancer. 2018 Apr 27;18(1):473. doi: 10.1186/s12885-018-4388-4.
5
E2F4 regulatory program predicts patient survival prognosis in breast cancer.
Breast Cancer Res. 2014 Dec 2;16(6):486. doi: 10.1186/s13058-014-0486-7.
7
Integrated gene expression profile predicts prognosis of breast cancer patients.
Breast Cancer Res Treat. 2009 Jan;113(2):231-7. doi: 10.1007/s10549-008-9925-4. Epub 2008 Feb 16.
8
The 70-gene prognosis signature predicts early metastasis in breast cancer patients between 55 and 70 years of age.
Ann Oncol. 2010 Apr;21(4):717-722. doi: 10.1093/annonc/mdp388. Epub 2009 Oct 13.
10
Grading breast cancer tissues using molecular portraits.
Mol Cell Proteomics. 2013 Dec;12(12):3612-23. doi: 10.1074/mcp.M113.030379. Epub 2013 Aug 27.

引用本文的文献

1
Prognostic genes of triple-negative breast cancer identified by weighted gene co-expression network analysis.
Oncol Lett. 2020 Jan;19(1):127-138. doi: 10.3892/ol.2019.11079. Epub 2019 Nov 11.
2
Poly-omic prediction of complex traits: OmicKriging.
Genet Epidemiol. 2014 Jul;38(5):402-15. doi: 10.1002/gepi.21808. Epub 2014 May 2.
3
Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value.
PLoS One. 2013 Dec 12;8(12):e82314. doi: 10.1371/journal.pone.0082314. eCollection 2013.
4
Prediction of breast cancer metastasis by gene expression profiles: a comparison of metagenes and single genes.
Cancer Inform. 2012;11:193-217. doi: 10.4137/CIN.S10375. Epub 2012 Dec 10.
5
Weighted frequent gene co-expression network mining to identify genes involved in genome stability.
PLoS Comput Biol. 2012;8(8):e1002656. doi: 10.1371/journal.pcbi.1002656. Epub 2012 Aug 30.
6
Mixed effects modeling of proliferation rates in cell-based models: consequence for pharmacogenomics and cancer.
PLoS Genet. 2012 Feb;8(2):e1002525. doi: 10.1371/journal.pgen.1002525. Epub 2012 Feb 9.

本文引用的文献

2
Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks.
Nature. 2009 Dec 17;462(7275):935-9. doi: 10.1038/nature08657.
3
Database resources of the National Center for Biotechnology Information.
Nucleic Acids Res. 2010 Jan;38(Database issue):D5-16. doi: 10.1093/nar/gkp967. Epub 2009 Nov 12.
4
The guanine nucleotide exchange factor (GEF) Ect2 is an oncogene in human cancer.
Adv Enzyme Regul. 2010;50(1):190-200. doi: 10.1016/j.advenzreg.2009.10.010. Epub 2009 Nov 6.
6
Substantially reduced expression of PIAS1 is associated with colon cancer development.
J Cancer Res Clin Oncol. 2009 Sep;135(9):1287-91. doi: 10.1007/s00432-009-0570-z. Epub 2009 Mar 15.
9
Identification of Drosophila mitotic genes by combining co-expression analysis and RNA interference.
PLoS Genet. 2008 Jul 18;4(7):e1000126. doi: 10.1371/journal.pgen.1000126.
10
ASPM is a novel marker for vascular invasion, early recurrence, and poor prognosis of hepatocellular carcinoma.
Clin Cancer Res. 2008 Aug 1;14(15):4814-20. doi: 10.1158/1078-0432.CCR-07-5262.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验