Suppr超能文献

基于计算机的图像研究对乳腺癌肿瘤巢的数学特征及其临床预后价值。

Computer-based image studies on tumor nests mathematical features of breast cancer and their clinical prognostic value.

机构信息

Department of Oncology, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors and Hubei Cancer Clinical Study Center, Wuhan, Hubei Province, China.

School of Computer, Wuhan University, Wuhan, Hubei Province, China.

出版信息

PLoS One. 2013 Dec 12;8(12):e82314. doi: 10.1371/journal.pone.0082314. eCollection 2013.

Abstract

BACKGROUND

The expending and invasive features of tumor nests could reflect the malignant biological behaviors of breast invasive ductal carcinoma. Useful information on cancer invasiveness hidden within tumor nests could be extracted and analyzed by computer image processing and big data analysis.

METHODS

Tissue microarrays from invasive ductal carcinoma (n = 202) were first stained with cytokeratin by immunohistochemical method to clearly demarcate the tumor nests. Then an expert-aided computer analysis system was developed to study the mathematical and geometrical features of the tumor nests. Computer recognition system and imaging analysis software extracted tumor nests information, and mathematical features of tumor nests were calculated. The relationship between tumor nests mathematical parameters and patients' 5-year disease free survival was studied.

RESULTS

There were 8 mathematical parameters extracted by expert-aided computer analysis system. Three mathematical parameters (number, circularity and total perimeter) with area under curve >0.5 and 4 mathematical parameters (average area, average perimeter, total area/total perimeter, average (area/perimeter)) with area under curve <0.5 in ROC analysis were combined into integrated parameter 1 and integrated parameter 2, respectively. Multivariate analysis showed that integrated parameter 1 (P = 0.040) was independent prognostic factor of patients' 5-year disease free survival. The hazard risk ratio of integrated parameter 1 was 1.454 (HR 95% CI [1.017-2.078]), higher than that of N stage (HR 1.396, 95% CI [1.125-1.733]) and hormone receptor status (HR 0.575, 95% CI [0.353-0.936]), but lower than that of histological grading (HR 3.370, 95% CI [1.125-5.364]) and T stage (HR 1.610, 95% CI [1.026 -2.527]).

CONCLUSIONS

This study indicated integrated parameter 1 of mathematical features (number, circularity and total perimeter) of tumor nests could be a useful parameter to predict the prognosis of early stage breast invasive ductal carcinoma.

摘要

背景

肿瘤巢的扩展和侵袭特征可以反映乳腺浸润性导管癌的恶性生物学行为。通过计算机图像处理和大数据分析,可以从肿瘤巢中提取和分析隐藏的癌症侵袭性有用信息。

方法

首先用免疫组织化学方法对浸润性导管癌(n=202)的组织微阵列进行细胞角蛋白染色,以清楚地区分肿瘤巢。然后开发了一种专家辅助的计算机分析系统来研究肿瘤巢的数学和几何特征。计算机识别系统和成像分析软件提取肿瘤巢信息,并计算肿瘤巢的数学特征。研究了肿瘤巢数学参数与患者 5 年无病生存的关系。

结果

专家辅助计算机分析系统提取了 8 个数学参数。ROC 分析中,曲线下面积(AUC)>0.5 的 3 个数学参数(数量、圆形度和总周长)和 AUC<0.5 的 4 个数学参数(平均面积、平均周长、总面积/总周长、平均(面积/周长))组合成综合参数 1 和综合参数 2。多变量分析显示,综合参数 1(P=0.040)是患者 5 年无病生存的独立预后因素。综合参数 1 的危险风险比为 1.454(HR 95%CI[1.017-2.078]),高于 N 期(HR 1.396,95%CI[1.125-1.733])和激素受体状态(HR 0.575,95%CI[0.353-0.936]),但低于组织学分级(HR 3.370,95%CI[1.125-5.364])和 T 期(HR 1.610,95%CI[1.026-2.527])。

结论

本研究表明,肿瘤巢的数学特征(数量、圆形度和总周长)的综合参数 1 可以作为预测早期乳腺浸润性导管癌预后的有用参数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2584/3861398/19f84297805d/pone.0082314.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验