Suppr超能文献

用于检测基因-基因相互作用的 MDR 和 GMDR 方法的研究设计中的实际和理论考虑。

Practical and theoretical considerations in study design for detecting gene-gene interactions using MDR and GMDR approaches.

机构信息

Institute of Bioinformatics, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.

出版信息

PLoS One. 2011 Feb 28;6(2):e16981. doi: 10.1371/journal.pone.0016981.

Abstract

Detection of interacting risk factors for complex traits is challenging. The choice of an appropriate method, sample size, and allocation of cases and controls are serious concerns. To provide empirical guidelines for planning such studies and data analyses, we investigated the performance of the multifactor dimensionality reduction (MDR) and generalized MDR (GMDR) methods under various experimental scenarios. We developed the mathematical expectation of accuracy and used it as an indicator parameter to perform a gene-gene interaction study. We then examined the statistical power of GMDR and MDR within the plausible range of accuracy (0.50∼0.65) reported in the literature. The GMDR with covariate adjustment had a power of >80% in a case-control design with a sample size of ≥2000, with theoretical accuracy ranging from 0.56 to 0.62. However, when the accuracy was <0.56, a sample size of ≥4000 was required to have sufficient power. In our simulations, the GMDR outperformed the MDR under all models with accuracy ranging from 0.56∼0.62 for a sample size of 1000-2000. However, the two methods performed similarly when the accuracy was outside this range or the sample was significantly larger. We conclude that with adjustment of a covariate, GMDR performs better than MDR and a sample size of 1000∼2000 is reasonably large for detecting gene-gene interactions in the range of effect size reported by the current literature; whereas larger sample size is required for more subtle interactions with accuracy <0.56.

摘要

检测复杂性状的相互作用风险因素具有挑战性。适当方法的选择、样本量以及病例和对照的分配都是严重关切的问题。为了为规划此类研究和数据分析提供经验性指导原则,我们在各种实验场景下研究了多因素维度缩减(MDR)和广义 MDR(GMDR)方法的性能。我们开发了准确性的数学期望,并将其用作指标参数来进行基因-基因相互作用研究。然后,我们在文献中报告的合理准确性范围内(0.50∼0.65)检查了 GMDR 和 MDR 的统计功效。在病例对照设计中,具有协变量调整的 GMDR 在样本量≥2000 的情况下,具有>80%的功效,理论准确性范围为 0.56 至 0.62。然而,当准确性<0.56 时,需要≥4000 的样本量才能具有足够的功效。在我们的模拟中,GMDR 在所有模型下的准确性都优于 MDR,在样本量为 1000-2000 的情况下,准确性范围为 0.56∼0.62。然而,当准确性超出此范围或样本明显较大时,这两种方法的性能相似。我们得出结论,在调整协变量后,GMDR 的性能优于 MDR,在当前文献报告的效应大小范围内,样本量为 1000∼2000 对于检测基因-基因相互作用是相当大的;而对于准确性<0.56 的更细微相互作用,则需要更大的样本量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f30e/3046176/7ea3e8ee7f9a/pone.0016981.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验