Suppr超能文献

基于模糊集的基因-基因相互作用广义多因素降维分析

Fuzzy set-based generalized multifactor dimensionality reduction analysis of gene-gene interactions.

作者信息

Jung Hye-Young, Leem Sangseob, Park Taesung

机构信息

Faculty of Liberal Education, Seoul National University, Seoul, 08826, South Korea.

Department of Statistics, Seoul National University, Seoul, 08826, South Korea.

出版信息

BMC Med Genomics. 2018 Apr 20;11(Suppl 2):32. doi: 10.1186/s12920-018-0343-0.

Abstract

BACKGROUND

Gene-gene interactions (GGIs) are a known cause of missing heritability. Multifactor dimensionality reduction (MDR) is one of most commonly used methods for GGI detection. The generalized multifactor dimensionality reduction (GMDR) method is an extension of MDR method that is applicable to various types of traits, and allows covariate adjustments. Our previous Fuzzy MDR (FMDR) is another extension for overcoming simple binary classification. FMDR uses continuous member-ship values instead of binary membership values 0 and 1, improving power for detecting causal SNPs and more intuitive interpretations in real data analysis. Here, we propose the fuzzy generalized multifactor dimensionality reduction (FGMDR) method, as a combined analysis of fuzzy set-based analysis and GMDR method, to detect GGIs associated with diseases using fuzzy set theory.

RESULTS

Through simulation studies for different types of traits, the proposed FGMDR showed a higher detection ratio of causal SNPs, compared to GMDR. We then applied FGMDR to two real data: Crohn's disease (CD) data from the Wellcome Trust Case Control Consortium (WTCCC) with a binary phenotype and the Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) data from Korean population with a continuous phenotype. The interactions derived by our method include the pre-reported interactions associated with phenotypes.

CONCLUSIONS

The proposed FGMDR performs well for GGI detection with covariate adjustments. The program written in R for FGMDR is available at http://statgen.snu.ac.kr/software/FGMDR .

摘要

背景

基因-基因相互作用(GGIs)是遗传性缺失的已知原因。多因素降维法(MDR)是检测GGIs最常用的方法之一。广义多因素降维法(GMDR)是MDR方法的扩展,适用于各种类型的性状,并允许进行协变量调整。我们之前的模糊MDR(FMDR)是另一种用于克服简单二元分类的扩展方法。FMDR使用连续的隶属度值而非二元隶属度值0和1,提高了检测因果单核苷酸多态性(SNP)的效能,并且在实际数据分析中解释更直观。在此,我们提出模糊广义多因素降维法(FGMDR),作为基于模糊集分析和GMDR方法的联合分析,以利用模糊集理论检测与疾病相关的GGIs。

结果

通过针对不同类型性状的模拟研究,与GMDR相比,所提出的FGMDR显示出更高的因果SNP检测率。然后,我们将FGMDR应用于两个真实数据集:来自威康信托病例对照协会(WTCCC)的克罗恩病(CD)数据(具有二元表型)以及来自韩国人群的胰岛素抵抗稳态模型评估(HOMA-IR)数据(具有连续表型)。我们的方法得出的相互作用包括与表型相关的先前报道的相互作用。

结论

所提出的FGMDR在进行协变量调整的GGI检测中表现良好。用于FGMDR的用R语言编写的程序可在http://statgen.snu.ac.kr/software/FGMDR获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a7f/5918459/761ce4f12dd9/12920_2018_343_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验