Suppr超能文献

建模、自适应控制与最佳药物治疗。

Modeling, adaptive control, and optimal drug therapy.

作者信息

Jelliffe R W, Schumitzky A

机构信息

Laboratory of Applied Pharmacokinetics, University of Southern California School of Medicine, Los Angeles 90033.

出版信息

Med Prog Technol. 1990 May;16(1-2):95-110.

PMID:2138702
Abstract

Drug therapy, its clearly development, and the advent of pharmacokinetic models are described, from the original work of Teorell, through that of Augsberger and Kruger-Thiemer, to the present. Adaptive control of such models, long known in engineering, began in therapeutics with methods for linear and nonlinear least-squares regression, and has progressed to the Maximum Aposteriori Probability (MAP) Bayesian method. Strategies for optimal monitoring of serum concentrations are described and their clinical results briefly evaluated. Lastly, the new method of Approximate Optimal Closed-Loop (AOCL) control is described, in which the therapeutic regimen is used at the same time to probe (learn about) the patient's model approximately optimally. The new method considers the expected values of planned future serum concentrations (or other responses), in addition to the traditional measurement of past serum concentrations. This should optimize the process of learning about a patient's model while treating him at the same time.

摘要

本文描述了药物治疗及其明确的发展历程,以及药代动力学模型的出现,从特奥雷尔的早期工作,到奥格斯伯格和克鲁格 - 蒂默的研究,直至当下。这种模型的自适应控制在工程领域早已为人所知,在治疗学中始于线性和非线性最小二乘回归方法,并已发展到最大后验概率(MAP)贝叶斯方法。文中描述了血清浓度的最佳监测策略,并简要评估了其临床效果。最后,介绍了近似最优闭环(AOCL)控制的新方法,其中治疗方案同时用于近似最优地探测(了解)患者的模型。该新方法除了传统的过去血清浓度测量外,还考虑了计划未来血清浓度(或其他反应)的期望值。这应该能在治疗患者的同时优化了解患者模型的过程。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验