Suppr超能文献

miRNA 转染和 AGO 结合 CLIP-seq 数据集揭示了 miRNA 作用的不同决定因素。

MicroRNA transfection and AGO-bound CLIP-seq data sets reveal distinct determinants of miRNA action.

机构信息

The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.

出版信息

RNA. 2011 May;17(5):820-34. doi: 10.1261/rna.2387911. Epub 2011 Mar 9.

Abstract

Microarray expression analyses following miRNA transfection/inhibition and, more recently, Argonaute cross-linked immunoprecipitation (CLIP)-seq assays have been used to detect miRNA target sites. CLIP and expression approaches measure differing stages of miRNA functioning-initial binding of the miRNP complex and subsequent message repression. We use nonparametric predictive models to characterize a large number of known target and flanking features, utilizing miRNA transfection, HITS-CLIP, and PAR-CLIP data. In particular, we utilize the precise spatial information provided by CLIP-seq to analyze the predictive effect of target flanking features. We observe distinct target determinants between expression-based and CLIP-based data. Target flanking features such as flanking region conservation are an important AGO-binding determinant-we hypothesize that CLIP experiments have a preference for strongly bound miRNP-target interactions involving adjacent RNA-binding proteins that increase the strength of cross-linking. In contrast, seed-related features are major determinants in expression-based studies, but less so for CLIP-seq studies, and increased miRNA concentrations typical of transfection studies contribute to this difference. While there is a good overlap between miRNA targets detected by miRNA transfection and CLIP-seq, the detection of CLIP-seq targets is largely independent of the level of subsequent mRNA degradation. Also, models built using CLIP-seq data show strong predictive power between independent CLIP-seq data sets, but are not strongly predictive for expression change. Similarly, models built from expression data are not strongly predictive for CLIP-seq data sets, supporting the finding that the determinants of miRNA binding and mRNA degradation differ. Predictive models and results are available at http://servers.binf.ku.dk/antar/.

摘要

微阵列表达分析后 miRNA 转染/抑制,以及最近 Argonaute 交联免疫沉淀(CLIP)-seq 检测已被用于检测 miRNA 靶位点。CLIP 和表达方法测量 miRNA 功能的不同阶段 - miRNP 复合物的初始结合和随后的 mRNA 抑制。我们使用非参数预测模型来描述大量已知的靶标和侧翼特征,利用 miRNA 转染、HITS-CLIP 和 PAR-CLIP 数据。特别是,我们利用 CLIP-seq 提供的精确空间信息来分析靶标侧翼特征的预测效果。我们观察到基于表达和 CLIP 的数据之间存在不同的靶标决定因素。侧翼特征,如侧翼区域保守性,是 AGO 结合的重要决定因素 - 我们假设 CLIP 实验优先选择涉及相邻 RNA 结合蛋白的强结合 miRNP-靶相互作用,这些蛋白增加交联的强度。相比之下,在基于表达的研究中,种子相关特征是主要决定因素,但在 CLIP-seq 研究中则不太重要,而转染研究中典型的 miRNA 浓度增加导致了这种差异。虽然 miRNA 转染和 CLIP-seq 检测到的 miRNA 靶标之间有很好的重叠,但 CLIP-seq 靶标的检测在很大程度上独立于随后的 mRNA 降解水平。此外,使用 CLIP-seq 数据构建的模型在独立的 CLIP-seq 数据集之间显示出很强的预测能力,但对表达变化的预测能力不强。同样,基于表达数据构建的模型对 CLIP-seq 数据集的预测能力也不强,这支持了 miRNA 结合和 mRNA 降解的决定因素不同的发现。预测模型和结果可在 http://servers.binf.ku.dk/antar/ 上获得。

相似文献

3
CLIP-based prediction of mammalian microRNA binding sites.基于 CLIP 的哺乳动物 microRNA 结合位点预测。
Nucleic Acids Res. 2013 Aug;41(14):e138. doi: 10.1093/nar/gkt435. Epub 2013 May 22.
8
HITS-CLIP and PAR-CLIP advance viral miRNA targetome analysis.HITS-CLIP和PAR-CLIP推动了病毒微小RNA靶标组分析。
Crit Rev Eukaryot Gene Expr. 2014;24(2):101-16. doi: 10.1615/critreveukaryotgeneexpr.2014006367.

引用本文的文献

3
Advanced computational predictive models of miRNA-mRNA interaction efficiency.miRNA与mRNA相互作用效率的高级计算预测模型。
Comput Struct Biotechnol J. 2024 Apr 19;23:1740-1754. doi: 10.1016/j.csbj.2024.04.015. eCollection 2024 Dec.
4
Determinants of Functional MicroRNA Targeting.功能性 microRNA 靶向的决定因素。
Mol Cells. 2023 Jan 31;46(1):21-32. doi: 10.14348/molcells.2023.2157. Epub 2023 Jan 4.
9
A cell-based probabilistic approach unveils the concerted action of miRNAs.基于细胞的概率方法揭示了 miRNAs 的协同作用。
PLoS Comput Biol. 2019 Dec 2;15(12):e1007204. doi: 10.1371/journal.pcbi.1007204. eCollection 2019 Dec.

本文引用的文献

9
MicroRNAs: target recognition and regulatory functions.微小RNA:靶标识别与调控功能
Cell. 2009 Jan 23;136(2):215-33. doi: 10.1016/j.cell.2009.01.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验