Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK.
J Phys Condens Matter. 2010 Mar 17;22(10):104101. doi: 10.1088/0953-8984/22/10/104101. Epub 2010 Feb 23.
We use computer simulations to study a model, first proposed by Wales (2005 Phil. Trans. R. Soc. A 363 357), for the reversible and monodisperse self-assembly of simple icosahedral virus capsid structures. The success and efficiency of assembly as a function of thermodynamic and geometric factors can be qualitatively related to the potential energy landscape structure of the assembling system. Even though the model is strongly coarse-grained, it exhibits a number of features also observed in experiments, such as sigmoidal assembly dynamics, hysteresis in capsid formation and numerous kinetic traps. We also investigate the effect of macromolecular crowding on the assembly dynamics. Crowding agents generally reduce capsid yields at optimal conditions for non-crowded assembly, but may increase yields for parameter regimes away from the optimum. Finally, we generalize the model to a larger triangulation number T = 3, and observe assembly dynamics more complex than that seen for the original T = 1 model.
我们使用计算机模拟来研究一个模型,该模型最初由 Wales(2005 Phil. Trans. R. Soc. A 363 357)提出,用于简单的二十面体病毒衣壳结构的可逆和单分散自组装。作为热力学和几何因素的函数,组装的成功和效率可以定性地与组装系统的势能景观结构相关联。尽管该模型是强烈的粗粒化模型,但它表现出了许多在实验中也观察到的特征,例如组装动力学的 S 型曲线、衣壳形成中的滞后以及大量的动力学陷阱。我们还研究了大分子拥挤对组装动力学的影响。拥挤剂通常会降低在非拥挤组装的最佳条件下的衣壳产率,但对于远离最佳条件的参数范围,可能会增加产率。最后,我们将该模型推广到更大的三角剖分数 T = 3,并观察到比原始 T = 1 模型更复杂的组装动力学。