Suppr超能文献

寡聚体/寡聚体结合对衣壳组装动力学贡献的模拟研究

Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics.

作者信息

Zhang Tiequan, Schwartz Russell

机构信息

Department of Biological Sciences and Computer Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.

出版信息

Biophys J. 2006 Jan 1;90(1):57-64. doi: 10.1529/biophysj.105.072207. Epub 2005 Oct 7.

Abstract

The process by which hundreds of identical capsid proteins self-assemble into icosahedral structures is complex and poorly understood. Establishing constraints on the assembly pathways is crucial to building reliable theoretical models. For example, it is currently an open question to what degree overall assembly kinetics are dominated by one or a few most efficient pathways versus the enormous number theoretically possible. The importance of this question, however, is often overlooked due to the difficulties of addressing it in either theoretical or experimental practice. We apply a computer model based on a discrete-event simulation method to evaluate the contributions of nondominant pathways to overall assembly kinetics. This is accomplished by comparing two possible assembly models: one allowing growth to proceed only by the accretion of individual assembly subunits and the other allowing the binding of sterically compatible assembly intermediates any sizes. Simulations show that the two models perform almost identically under low binding rate conditions, where growth is strongly nucleation-limited, but sharply diverge under conditions of higher association rates or coat protein concentrations. The results suggest the importance of identifying the actual binding pattern if one is to build reliable models of capsid assembly or other complex self-assembly processes.

摘要

数百个相同的衣壳蛋白自组装成二十面体结构的过程很复杂,人们对此了解甚少。确定组装途径的限制因素对于构建可靠的理论模型至关重要。例如,目前一个悬而未决的问题是,总体组装动力学在多大程度上由一条或几条最有效的途径主导,而不是由理论上可能的大量途径主导。然而,由于在理论或实验实践中解决这个问题存在困难,这个问题的重要性常常被忽视。我们应用基于离散事件模拟方法的计算机模型来评估非主导途径对总体组装动力学的贡献。这是通过比较两种可能的组装模型来实现的:一种模型只允许通过单个组装亚基的附着来进行生长,另一种模型允许任何大小的空间兼容组装中间体结合。模拟结果表明,在低结合速率条件下,两种模型的表现几乎相同,此时生长受到强烈的成核限制,但在较高结合速率或衣壳蛋白浓度条件下,两种模型的表现会急剧不同。结果表明,如果要建立可靠的衣壳组装或其他复杂自组装过程的模型,识别实际的结合模式很重要。

相似文献

1
Simulation study of the contribution of oligomer/oligomer binding to capsid assembly kinetics.
Biophys J. 2006 Jan 1;90(1):57-64. doi: 10.1529/biophysj.105.072207. Epub 2005 Oct 7.
2
Kinetic theory of virus capsid assembly.
Phys Biol. 2007 Nov 26;4(4):296-304. doi: 10.1088/1478-3975/4/4/006.
3
Local rules simulation of the kinetics of virus capsid self-assembly.
Biophys J. 1998 Dec;75(6):2626-36. doi: 10.1016/S0006-3495(98)77708-2.
4
Modelling the self-assembly of virus capsids.
J Phys Condens Matter. 2010 Mar 17;22(10):104101. doi: 10.1088/0953-8984/22/10/104101. Epub 2010 Feb 23.
5
Classical nucleation theory of virus capsids.
Biophys J. 2006 Mar 15;90(6):1939-48. doi: 10.1529/biophysj.105.072975. Epub 2005 Dec 30.
6
Model-based analysis of assembly kinetics for virus capsids or other spherical polymers.
Biophys J. 2002 Aug;83(2):1217-30. doi: 10.1016/S0006-3495(02)75245-4.
7
Studies of reversible capsid shell growth.
J Phys Condens Matter. 2010 Mar 17;22(10):104115. doi: 10.1088/0953-8984/22/10/104115. Epub 2010 Feb 23.
8
Invariant polymorphism in virus capsid assembly.
J Am Chem Soc. 2009 Feb 25;131(7):2606-14. doi: 10.1021/ja807730x.
9
10
Stochastic kinetics of viral capsid assembly based on detailed protein structures.
Biophys J. 2006 May 1;90(9):3029-42. doi: 10.1529/biophysj.105.076737. Epub 2006 Feb 10.

引用本文的文献

1
Modeling reveals the strength of weak interactions in stacked-ring assembly.
Biophys J. 2024 Jul 2;123(13):1763-1780. doi: 10.1016/j.bpj.2024.05.015. Epub 2024 May 18.
2
Effect of ionic strength on the assembly of simian vacuolating virus capsid protein around poly(styrene sulfonate).
Eur Phys J E Soft Matter. 2023 Nov 2;46(11):107. doi: 10.1140/epje/s10189-023-00363-x.
3
Disassembly of Single Virus Capsids Monitored in Real Time with Multicycle Resistive-Pulse Sensing.
Anal Chem. 2022 Jan 18;94(2):985-992. doi: 10.1021/acs.analchem.1c03855. Epub 2021 Dec 21.
4
Should Virus Capsids Assemble Perfectly? Theory and Observation of Defects.
Biophys J. 2020 Nov 3;119(9):1781-1790. doi: 10.1016/j.bpj.2020.09.021. Epub 2020 Sep 28.
6
Analytical Techniques to Characterize the Structure, Properties, and Assembly of Virus Capsids.
Anal Chem. 2019 Jan 2;91(1):622-636. doi: 10.1021/acs.analchem.8b04824. Epub 2018 Dec 3.
7
A method for efficient Bayesian optimization of self-assembly systems from scattering data.
BMC Syst Biol. 2018 Jun 8;12(1):65. doi: 10.1186/s12918-018-0592-8.
8
Kinetic constraints on self-assembly into closed supramolecular structures.
Sci Rep. 2017 Sep 25;7(1):12295. doi: 10.1038/s41598-017-12528-8.
9
Quantitative computational models of molecular self-assembly in systems biology.
Phys Biol. 2017 May 23;14(3):035003. doi: 10.1088/1478-3975/aa6cdc.
10
Nanofluidic Devices with 8 Pores in Series for Real-Time, Resistive-Pulse Analysis of Hepatitis B Virus Capsid Assembly.
Anal Chem. 2017 May 2;89(9):4855-4862. doi: 10.1021/acs.analchem.6b04491. Epub 2017 Apr 17.

本文引用的文献

1
Electrostatic interactions govern both nucleation and elongation during phage P22 procapsid assembly.
Virology. 2005 Sep 15;340(1):33-45. doi: 10.1016/j.virol.2005.06.018.
3
A heteroaryldihydropyrimidine activates and can misdirect hepatitis B virus capsid assembly.
Proc Natl Acad Sci U S A. 2005 Jun 7;102(23):8138-43. doi: 10.1073/pnas.0409732102. Epub 2005 May 31.
4
Automatic generation of cellular reaction networks with Moleculizer 1.0.
Nat Biotechnol. 2005 Jan;23(1):131-6. doi: 10.1038/nbt1054.
5
Zinc ions trigger conformational change and oligomerization of hepatitis B virus capsid protein.
Biochemistry. 2004 Aug 10;43(31):9989-98. doi: 10.1021/bi049571k.
6
A tiling approach to virus capsid assembly explaining a structural puzzle in virology.
J Theor Biol. 2004 Feb 21;226(4):477-82. doi: 10.1016/j.jtbi.2003.10.006.
7
How does your virus grow? Understanding and interfering with virus assembly.
Trends Biotechnol. 2003 Dec;21(12):536-42. doi: 10.1016/j.tibtech.2003.09.012.
8
Physical principles in the construction of regular viruses.
Cold Spring Harb Symp Quant Biol. 1962;27:1-24. doi: 10.1101/sqb.1962.027.001.005.
9
Viral self-assembly as a thermodynamic process.
Phys Rev Lett. 2003 Jun 20;90(24):248101. doi: 10.1103/PhysRevLett.90.248101. Epub 2003 Jun 17.
10
Conserved intermediates on the assembly pathway of double-stranded RNA bacteriophages.
J Mol Biol. 2003 May 9;328(4):791-804. doi: 10.1016/s0022-2836(03)00322-x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验