Suppr超能文献

睡眠呼吸暂停患者多导睡眠图检查预测模型的评估。

Evaluation of a prediction model for sleep apnea in patients submitted to polysomnography.

机构信息

Júlia Kubitschek Hospital, Fundação Hospitalar do Estado de Minas Gerais-FHEMIG, Hospital Foundation of the state of Minas Gerais-Belo Horizonte, Brazil.

出版信息

J Bras Pneumol. 2011 Jan-Feb;37(1):75-84. doi: 10.1590/s1806-37132011000100012.

Abstract

OBJECTIVE

To test a prediction model for sleep apnea based on clinical and sociodemographic variables in a population suspected of having sleep disorders and submitted to polysomnography.

METHODS

We included 323 consecutive patients submitted to polysomnography because of the clinical suspicion of having sleep disorders. We used a questionnaire with sociodemographic questions and the Epworth sleepiness scale. Blood pressure, weight, height, and SpO2 were measured. Multiple linear regression was used in order to create a prediction model for sleep apnea, the apnea-hypopnea index (AHI) being the dependent variable. Multinomial logistic regression was used in order to identify factors independently associated with the severity of apnea (mild, moderate, or severe) in comparison with the absence of apnea.

RESULTS

The prevalence of sleep apnea in the study population was 71.2%. Sleep apnea was more prevalent in men than in women (81.2% vs. 56.8%; p < 0.001). The multiple linear regression model, using log AHI as the dependent variable, was composed of the following independent variables: neck circumference, witnessed apnea, age, BMI, and allergic rhinitis. The best-fit linear regression model explained 39% of the AHI variation. In the multinomial logistic regression, mild apnea was associated with BMI and neck circumference, whereas severe apnea was associated with age, BMI, neck circumference, and witnessed apnea.

CONCLUSIONS

Although the use of clinical prediction models for sleep apnea does not replace polysomnography as a tool for its diagnosis, they can optimize the process of deciding when polysomnography is indicated and increase the chance of obtaining positive polysomnography findings.

摘要

目的

在怀疑患有睡眠障碍并接受多导睡眠图检查的人群中,基于临床和社会人口统计学变量,检验一种睡眠呼吸暂停预测模型。

方法

我们纳入了 323 例因临床怀疑患有睡眠障碍而接受多导睡眠图检查的连续患者。我们使用了一份包含社会人口学问题和嗜睡量表的问卷。测量血压、体重、身高和 SpO2。采用多元线性回归建立预测睡眠呼吸暂停的模型,以呼吸暂停低通气指数(apnea-hypopnea index,AHI)为因变量。采用多项逻辑回归识别与无呼吸暂停相比,与呼吸暂停严重程度(轻度、中度或重度)独立相关的因素。

结果

研究人群中睡眠呼吸暂停的患病率为 71.2%。与女性(56.8%)相比,男性睡眠呼吸暂停更为常见(81.2%;p<0.001)。以 log AHI 为因变量的多元线性回归模型由颈围、目击呼吸暂停、年龄、BMI 和变应性鼻炎等独立变量组成。最佳拟合线性回归模型解释了 AHI 变化的 39%。在多项逻辑回归中,轻度呼吸暂停与 BMI 和颈围有关,而重度呼吸暂停与年龄、BMI、颈围和目击呼吸暂停有关。

结论

尽管使用临床预测模型诊断睡眠呼吸暂停并不能替代多导睡眠图,但它们可以优化决定何时进行多导睡眠图检查的过程,并增加获得阳性多导睡眠图检查结果的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验