University of Maryland, College Park, MD, USA.
Bull Math Biol. 2011 Dec;73(12):2837-64. doi: 10.1007/s11538-011-9648-2. Epub 2011 Mar 10.
A stochastic model is proposed for the position of the tip of an axon. Parameters in the model are determined from laboratory data. The first step is the reduction of inherent error in the laboratory data, followed by estimating parameters and fitting a mathematical model to this data. Several axonogenesis aspects have been investigated, particularly how positive axon elongation and growth cone kinematics are coupled processes but require very different theoretical descriptions. Preliminary results have been obtained through a series of experiments aimed at isolating the response of axons to controlled gradient exposures to guidance cues and the effects of ethanol and similar substances. We show results based on the following tasks; (A) development of a novel filtering strategy to obtain data sets truly representative of the axon trail formation; (B) creation of a coarse graining method which establishes (C) an optimal parameter estimation technique, and (D) derivation of a mathematical model which is stochastic in nature, parameterized by arc length. The framework and the resulting model allow for the comparison of experimental and theoretical mean square displacement (MSD) of the developing axon. Current results are focused on uncovering the geometric characteristics of the axons and MSD through analytical solutions and numerical simulations parameterized by arc length, thus ignoring the temporal growth processes. Future developments will capture the dynamic growth cone and how it behaves as a function of time. Qualitative and quantitative predictions of the model at specific length scales capture the experimental behavior well.
提出了一种用于轴突尖端位置的随机模型。模型中的参数是根据实验室数据确定的。第一步是减少实验室数据中的固有误差,然后估计参数并将数学模型拟合到该数据上。已经研究了几个轴突发生方面的问题,特别是正轴突伸长和生长锥运动学是如何耦合的过程,但需要非常不同的理论描述。通过一系列旨在分离轴突对导向线索的受控梯度暴露的反应以及乙醇和类似物质的影响的实验,已经获得了初步结果。我们基于以下任务展示结果; (A) 开发一种新颖的滤波策略,以获得真正代表轴突轨迹形成的数据;(B) 创建一种粗粒化方法,建立 (C) 最优参数估计技术,以及 (D) 导出一种自然具有随机性的数学模型,其参数化由弧长表示。该框架和由此产生的模型允许比较实验和理论平均平方位移(MSD)的发展轴突。目前的结果集中在通过参数化弧长的解析解和数值模拟揭示轴突的几何特征和 MSD,从而忽略了时间生长过程。未来的发展将捕捉动态生长锥及其随时间的行为。模型在特定长度尺度上的定性和定量预测很好地捕捉了实验行为。