Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy.
Exp Hematol. 2011 Jun;39(6):653-665.e6. doi: 10.1016/j.exphem.2011.02.013. Epub 2011 Mar 8.
As a better understanding of the molecular basis of carcinogenesis has emerged, oncogene-specific cell-signaling pathways have been successfully targeted to treat human malignances. Despite impressive advances in oncogene-directed therapeutics, genetic instability in cancer cells often manifest acquired resistance. This is particularly noted in the use of tyrosine kinase inhibitors therapies and not more evident than for chronic myeloid leukemia. Therefore, it is of great importance to understand the molecular mechanisms affecting cancer cell sensitivity and resistance to tyrosine kinase inhibitors.
In this study, we used continuous exposure to stepwise increasing concentrations of imatinib (0.6-1 μM) to select imatinib-resistant K562 cells.
Expression of BCR-ABL increased both at RNA and protein levels in imatinib-resistant cell lines. Furthermore, expression levels of sphingosine kinase 1 (SphK1) were increased significantly in resistant cells, channeling sphingoid bases to the SphK1 pathway and activating sphingosine-1-phosphate-dependent tyrosine phosphorylation pathways that include the adaptor protein Crk. The partial inhibition of SphK1 activity by N,N-dimethylsphingosine or expression by small interfering RNA increased sensitivity to imatinib-induced apoptosis in resistant cells and returned BCR-ABL to baseline levels. To determine the resistance mechanism-induced SphK1 upregulation, we used pharmacological inhibitors of the phosphoinositide 3-kinase/AKT/mammalian target of rapamycin signaling pathway and observed robust downmodulation of SphK1 expression and activity when AKT2, but not AKT1 or AKT3, was suppressed.
These results demonstrate that SphK1 is upregulated in imatinib-resistant K562 cells by a pathway contingent on a phosphoinositide 3-kinase/AKT2/mammalian target of rapamycin signaling pathway. We propose that SphK1 plays an important role in development of acquired resistance to imatinib in chronic myeloid leukemia cell lines.
随着对致癌分子基础认识的不断深入,癌基因特异性细胞信号通路已成功地用于治疗人类恶性肿瘤。尽管在癌基因靶向治疗方面取得了令人瞩目的进展,但癌细胞的遗传不稳定性常常表现出获得性耐药。在使用酪氨酸激酶抑制剂治疗时尤其如此,在慢性髓性白血病中更为明显。因此,了解影响癌细胞对酪氨酸激酶抑制剂敏感性和耐药性的分子机制非常重要。
在本研究中,我们使用连续暴露于逐步增加浓度的伊马替尼(0.6-1 μM)来选择伊马替尼耐药的 K562 细胞。
在伊马替尼耐药细胞系中,BCR-ABL 的表达在 RNA 和蛋白质水平上均增加。此外,在耐药细胞中,鞘氨醇激酶 1(SphK1)的表达水平显著增加,将鞘氨醇基转移到 SphK1 途径,并激活 SphK1 依赖性丝氨酸-1-磷酸依赖的酪氨酸磷酸化途径,包括衔接蛋白 Crk。用 N,N-二甲基鞘氨醇部分抑制 SphK1 活性或用小干扰 RNA 表达可增加耐药细胞对伊马替尼诱导凋亡的敏感性,并使 BCR-ABL 恢复到基线水平。为了确定耐药机制诱导的 SphK1 上调,我们使用了磷酸肌醇 3-激酶/AKT/雷帕霉素靶蛋白信号通路的药理学抑制剂,并观察到当 AKT2 被抑制时,SphK1 的表达和活性被显著下调,但 AKT1 或 AKT3 被抑制时则没有。
这些结果表明,SphK1 在伊马替尼耐药的 K562 细胞中被一种依赖于磷酸肌醇 3-激酶/AKT2/雷帕霉素靶蛋白信号通路的途径上调。我们提出 SphK1 在慢性髓性白血病细胞系获得性伊马替尼耐药的发展中起重要作用。