Suppr超能文献

甘氨酸抑制功能障碍通过星形胶质细胞衍生的 D-丝氨酸将触觉转化为疼痛。

Glycine inhibitory dysfunction turns touch into pain through astrocyte-derived D-serine.

机构信息

Clermont Université, Université d'Auvergne, Neurobiologie de la douleur trigéminale, BP 10448, F-63000 Clermont-Ferrand, France Inserm, U929, F-63000 Clermont-Ferrand, CHU Clermont-Ferrand, Service d'Odontologie, F-63003 Clermont-Ferrand, France Inserm, U862, Neurocentre Magendie, F-33077 Bordeaux, France Université de Bordeaux, F-33077 Bordeaux, France.

出版信息

Pain. 2011 Jun;152(6):1340-1348. doi: 10.1016/j.pain.2011.02.021. Epub 2011 Mar 9.

Abstract

Glycine inhibitory dysfunction provides a useful experimental model for studying the mechanism of dynamic mechanical allodynia, a widespread and intractable symptom of neuropathic pain. In this model, allodynia expression relies on N-methyl-d-aspartate receptors (NMDARs), and it has been shown that astrocytes can regulate their activation through the release of the NMDAR coagonist d-serine. Recent studies also suggest that astrocytes potentially contribute to neuropathic pain. However, the involvement of astrocytes in dynamic mechanical allodynia remains unknown. Here, we show that after blockade of glycine inhibition, orofacial tactile stimuli activated medullary dorsal horn (MDH) astrocytes, but not microglia. Accordingly, the glia inhibitor fluorocitrate, but not the microglia inhibitor minocycline, prevented allodynia. Fluorocitrate also impeded activation of astrocytes and blocked activation of the superficial MDH neural circuit underlying allodynia, as revealed by study of Fos expression. MDH astrocytes are thus required for allodynia. They may also produce d-serine because astrocytic processes were selectively immunolabeled for serine racemase, the d-serine synthesizing enzyme. Accordingly, selective degradation of d-serine with d-amino acid oxidase applied in vivo prevented allodynia and activation of the underlying neural circuit. Conversely, allodynia blockade by fluorocitrate was reversed by exogenous d-serine. These results suggest the following scenario: removal of glycine inhibition makes tactile stimuli able to activate astrocytes; activated astrocytes may provide d-serine to enable NMDAR activation and thus allodynia. Such a contribution of astrocytes to pathological pain fuels the emerging concept that astrocytes are critical players in pain signaling. Glycine disinhibition makes tactile stimuli able to activate astrocytes, which may provide d-serine to enable NMDA receptor activation and thus allodynia.

摘要

甘氨酸抑制功能障碍为研究动态机械性痛觉过敏(一种广泛存在且难以治疗的神经病理性疼痛症状)的机制提供了一个有用的实验模型。在该模型中,痛觉过敏的表达依赖于 N-甲基-D-天冬氨酸受体(NMDAR),并且已经表明星形胶质细胞可以通过释放 NMDAR 共激动剂 D-丝氨酸来调节其激活。最近的研究还表明,星形胶质细胞可能与神经病理性疼痛有关。然而,星形胶质细胞在动态机械性痛觉过敏中的参与情况尚不清楚。在这里,我们表明,在甘氨酸抑制被阻断后,口腔触觉刺激激活了延髓背角(MDH)星形胶质细胞,但不会激活小胶质细胞。相应地,神经胶质细胞抑制剂氟柠檬酸,但不是小胶质细胞抑制剂米诺环素,可以预防痛觉过敏。氟柠檬酸还阻止了痛觉过敏的浅层 MDH 神经回路的激活,这是通过研究 Fos 表达得出的。因此,MDH 星形胶质细胞是痛觉过敏所必需的。它们也可能产生 D-丝氨酸,因为星形胶质细胞的突起被选择性地免疫标记为 D-丝氨酸合成酶丝氨酸 racemase。因此,体内应用 D-氨基酸氧化酶选择性降解 D-丝氨酸可预防痛觉过敏和潜在神经回路的激活。相反,氟柠檬酸引起的痛觉过敏阻断可被外源性 D-丝氨酸逆转。这些结果表明了以下情况:甘氨酸抑制的去除使得触觉刺激能够激活星形胶质细胞;激活的星形胶质细胞可能提供 D-丝氨酸以使 NMDAR 激活,从而导致痛觉过敏。星形胶质细胞对病理性疼痛的这种贡献支持了一个新兴的概念,即星形胶质细胞是疼痛信号传递的关键参与者。甘氨酸抑制功能障碍使触觉刺激能够激活星形胶质细胞,星形胶质细胞可能提供 D-丝氨酸以激活 NMDA 受体,从而导致痛觉过敏。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验