Miraucourt Loïs S, Moisset Xavier, Dallel Radhouane, Voisin Daniel L
INSERM, U929, F-63000 Clermont-Ferrand, France.
J Neurosci. 2009 Feb 25;29(8):2519-27. doi: 10.1523/JNEUROSCI.3923-08.2009.
Dynamic mechanical allodynia is a widespread and intractable symptom of neuropathic pain for which there is a lack of effective therapy. We recently provided a novel perspective on the mechanisms of this symptom by showing that a simple switch in trigeminal glycine synaptic inhibition can turn touch into pain by unmasking innocuous input to superficial dorsal horn nociceptive specific neurons through a local excitatory, NMDA-dependent neural circuit involving neurons expressing the gamma isoform of protein kinase C. Here, we further investigated the clinical relevance and processing of glycine disinhibition. First, we showed that glycine disinhibition with strychnine selectively induced dynamic but not static mechanical allodynia. The induced allodynia was resistant to morphine. Second, morphine did not prevent the activation of the neural circuit underlying allodynia as shown by study of Fos expression and extracellular-signal regulated kinase phosphorylation in dorsal horn neurons. Third, in contrast to intradermal capsaicin injections, light, dynamic mechanical stimuli applied under disinhibition did not produce neurokinin 1 (NK1) receptor internalization in dorsal horn neurons. Finally, light, dynamic mechanical stimuli applied under disinhibition induced Fos expression only in neurons that did not express NK1 receptor. To summarize, the selectivity and morphine resistance of the glycine-disinhibition paradigm adequately reflect the clinical characteristics of dynamic mechanical allodynia. The present findings thus reveal the involvement of a selective dorsal horn circuit in dynamic mechanical allodynia, which operates through superficial lamina nociceptive-specific neurons that do not bear NK1 receptor and provide an explanation for the differences in the pharmacological sensitivity of neuropathic pain symptoms.
动态机械性异常性疼痛是神经性疼痛中一种普遍且棘手的症状,目前缺乏有效的治疗方法。我们最近通过研究发现,三叉神经甘氨酸突触抑制的一个简单转换可通过一个局部兴奋性、NMDA 依赖性神经回路,使无害的输入暴露于浅表背角伤害性特异性神经元,从而将触觉转化为疼痛,该神经回路涉及表达蛋白激酶 Cγ 亚型的神经元,这为该症状的机制提供了新的视角。在此,我们进一步研究了甘氨酸去抑制的临床相关性及作用机制。首先,我们发现用士的宁进行甘氨酸去抑制可选择性地诱发动态而非静态机械性异常性疼痛。所诱发的异常性疼痛对吗啡具有抗性。其次,如通过对背角神经元中 Fos 表达和细胞外信号调节激酶磷酸化的研究所示,吗啡并不能阻止异常性疼痛背后神经回路的激活。第三,与皮内注射辣椒素不同,在去抑制状态下施加的轻微动态机械刺激不会导致背角神经元中的神经激肽 1(NK1)受体内化。最后,在去抑制状态下施加的轻微动态机械刺激仅在不表达 NK1 受体的神经元中诱导 Fos 表达。总之,甘氨酸去抑制模式的选择性和对吗啡的抗性充分反映了动态机械性异常性疼痛的临床特征。因此,本研究结果揭示了一个选择性背角回路参与动态机械性异常性疼痛,该回路通过不携带 NK1 受体的浅表层伤害性特异性神经元发挥作用,并为神经性疼痛症状的药理敏感性差异提供了解释。