Department of Materials Science and Engineering, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
J Phys Condens Matter. 2010 Jun 23;22(24):245401. doi: 10.1088/0953-8984/22/24/245401. Epub 2010 Jun 1.
Based on a first-principles calculation combined with the cluster expansion technique and Monte Carlo statistical simulation, the segregation behavior of a Pt(28)Rh(27) cuboctahedral nanoparticle is examined. From the effective cluster interaction of the nanoparticle, we see a similar weak ordering tendency inside the nanoparticle to that for Pt-Rh bulk alloy. Below the bulk melting temperature of around 1700 K, we find strong Pt segregation to the surface of the nanoparticle. This is due mainly to larger Pt on-site segregation energy for surface sites than that for subsurface and core sites. In order to examine the segregation behavior of the Pt(28)Rh(27) nanoparticle, we find that the ordering contribution is essential, which reverses the preferable segregation between edge and (100) sites. A ground-state atomic arrangement of the Pt(28)Rh(27) nanoparticle at T = 0 K is predicted, where all the Pt atoms are located at surface sites, particularly at the vertex site of the lowest coordination number.
基于第一性原理计算结合团簇展开技术和蒙特卡罗统计模拟,研究了 Pt(28)Rh(27) 立方八面体纳米粒子的偏析行为。从纳米粒子的有效团簇相互作用中,我们看到了纳米粒子内部类似于 Pt-Rh 体相合金的弱有序趋势。在大约 1700 K 的体相熔化温度以下,我们发现强烈的 Pt 偏析到纳米粒子的表面。这主要是由于表面位置的 Pt 局域偏析能大于亚表面和核位置的 Pt 局域偏析能。为了研究 Pt(28)Rh(27) 纳米粒子的偏析行为,我们发现有序贡献是必不可少的,这会改变边缘和 (100) 位之间的优先偏析。预测了 T = 0 K 时 Pt(28)Rh(27) 纳米粒子的基态原子排列,其中所有的 Pt 原子都位于表面位置,特别是在最低配位数的顶点位置。