Hoffmann Thomas J, Vansteelandt Stijn, Lange Christoph, Silverman Edwin K, DeMeo Dawn L, Laird Nan M
Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.
Biometrics. 2011 Dec;67(4):1260-70. doi: 10.1111/j.1541-0420.2011.01581.x. Epub 2011 Mar 14.
It is useful to have robust gene-environment interaction tests that can utilize a variety of family structures in an efficient way. This article focuses on tests for gene-environment interaction in the presence of main genetic and environmental effects. The objective is to develop powerful tests that can combine trio data with parental genotypes and discordant sibships when parents' genotypes are missing. We first make a modest improvement on a method for discordant sibs (discordant on phenotype), but the approach does not allow one to use families when all offspring are affected, e.g., trios. We then make a modest improvement on a Mendelian transmission-based approach that is inefficient when discordant sibs are available, but can be applied to any nuclear family. Finally, we propose a hybrid approach that utilizes the most efficient method for a specific family type, then combines over families. We utilize this hybrid approach to analyze a chronic obstructive pulmonary disorder dataset to test for gene-environment interaction in the Serpine2 gene with smoking. The methods are freely available in the R package fbati.
拥有强大的基因-环境相互作用测试方法很有用,这些方法能够以高效的方式利用各种家庭结构。本文重点关注在存在主要遗传和环境效应的情况下进行基因-环境相互作用的测试。目标是开发强大的测试方法,当父母基因型缺失时,能够将三联体数据与父母基因型及不一致同胞对的数据结合起来。我们首先对一种针对不一致同胞对(表型不一致)的方法进行了适度改进,但该方法在所有后代都受影响时(例如三联体)不允许使用家庭数据。然后我们对一种基于孟德尔遗传传递的方法进行了适度改进,该方法在有不一致同胞对时效率较低,但可应用于任何核心家庭。最后,我们提出了一种混合方法,该方法针对特定家庭类型采用最有效的方法,然后在不同家庭间进行合并。我们利用这种混合方法分析了一个慢性阻塞性肺疾病数据集,以测试丝氨酸蛋白酶抑制剂2基因与吸烟之间的基因-环境相互作用。这些方法可在R包fbati中免费获取。