Department of Biogeochemistry, Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany.
Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5649-54. doi: 10.1073/pnas.1015744108. Epub 2011 Mar 14.
Diatoms survive in dark, anoxic sediment layers for months to decades. Our investigation reveals a correlation between the dark survival potential of marine diatoms and their ability to accumulate NO(3)(-) intracellularly. Axenic strains of benthic and pelagic diatoms that stored 11-274 mM NO(3)(-) in their cells survived for 6-28 wk. After sudden shifts to dark, anoxic conditions, the benthic diatom Amphora coffeaeformis consumed 84-87% of its intracellular NO(3)(-) pool within 1 d. A stable-isotope labeling experiment proved that (15)NO(3)(-) consumption was accompanied by the production and release of (15)NH(4)(+), indicating dissimilatory nitrate reduction to ammonium (DNRA). DNRA is an anaerobic respiration process that is known mainly from prokaryotic organisms, and here shown as dissimilatory nitrate reduction pathway used by a eukaryotic phototroph. Similar to large sulfur bacteria and benthic foraminifera, diatoms may respire intracellular NO(3)(-) in sediment layers without O(2) and NO(3)(-). The rapid depletion of the intracellular NO(3)(-) storage, however, implies that diatoms use DNRA to enter a resting stage for long-term survival. Assuming that pelagic diatoms are also capable of DNRA, senescing diatoms that sink through oxygen-deficient water layers may be a significant NH(4)(+) source for anammox, the prevalent nitrogen loss pathway of oceanic oxygen minimum zones.
硅藻能在黑暗、缺氧的沉积物中存活数月至数十年。我们的研究揭示了海洋硅藻的黑暗生存潜力与其在细胞内积累硝酸盐的能力之间存在相关性。在细胞内储存 11-274mM 硝酸盐的底栖和浮游硅藻的无菌菌株能存活 6-28 周。在突然转入黑暗、缺氧条件后,底栖硅藻 Amphora coffeaeformis 在 1 天内消耗了其细胞内硝酸盐库的 84-87%。一个稳定同位素标记实验证明,(15)NO3-的消耗伴随着 (15)NH4+的产生和释放,表明硝酸盐的异化还原为铵(DNRA)。DNRA 是一种主要从原核生物中已知的厌氧呼吸过程,在这里被证明是一种真核光养生物利用的异化硝酸盐还原途径。与大型硫细菌和底栖有孔虫类似,硅藻可能在没有 O2 和 NO3-的沉积物层中呼吸细胞内的 NO3-。然而,细胞内 NO3-储存的迅速消耗意味着硅藻利用 DNRA 进入休眠状态以实现长期生存。假设浮游硅藻也能够进行 DNRA,那么通过缺氧水层下沉的衰老硅藻可能是海洋缺氧区中普遍的氮损失途径——厌氧氨氧化的重要 NH4+来源。