Lam Phyllis, Lavik Gaute, Jensen Marlene M, van de Vossenberg Jack, Schmid Markus, Woebken Dagmar, Gutiérrez Dimitri, Amann Rudolf, Jetten Mike S M, Kuypers Marcel M M
Max Planck Institute for Marine Microbiology, D-28359 Bremen, Germany.
Proc Natl Acad Sci U S A. 2009 Mar 24;106(12):4752-7. doi: 10.1073/pnas.0812444106. Epub 2009 Mar 2.
The oxygen minimum zone (OMZ) of the Eastern Tropical South Pacific (ETSP) is 1 of the 3 major regions in the world where oceanic nitrogen is lost in the pelagic realm. The recent identification of anammox, instead of denitrification, as the likely prevalent pathway for nitrogen loss in this OMZ raises strong questions about our understanding of nitrogen cycling and organic matter remineralization in these waters. Without detectable denitrification, it is unclear how NH(4)(+) is remineralized from organic matter and sustains anammox or how secondary NO(2)(-) maxima arise within the OMZ. Here we show that in the ETSP-OMZ, anammox obtains 67% or more of NO(2)(-) from nitrate reduction, and 33% or less from aerobic ammonia oxidation, based on stable-isotope pairing experiments corroborated by functional gene expression analyses. Dissimilatory nitrate reduction to ammonium was detected in an open-ocean setting. It occurred throughout the OMZ and could satisfy a substantial part of the NH(4)(+) requirement for anammox. The remaining NH(4)(+) came from remineralization via nitrate reduction and probably from microaerobic respiration. Altogether, deep-sea NO(3)(-) accounted for only approximately 50% of the nitrogen loss in the ETSP, rather than 100% as commonly assumed. Because oceanic OMZs seem to be expanding because of global climate change, it is increasingly imperative to incorporate the correct nitrogen-loss pathways in global biogeochemical models to predict more accurately how the nitrogen cycle in our future ocean may respond.
东热带南太平洋(ETSP)的海洋缺氧区(OMZ)是世界上三大主要区域之一,是海洋中氮在远洋区域流失的地方。最近发现厌氧氨氧化而非反硝化作用可能是该OMZ中氮流失的主要途径,这对我们对这些水域中氮循环和有机物再矿化的理解提出了重大质疑。由于未检测到反硝化作用,目前尚不清楚铵离子(NH₄⁺)如何从有机物中再矿化并维持厌氧氨氧化过程,也不清楚OMZ内如何出现亚硝酸盐(NO₂⁻)的二次最大值。在此,我们通过功能基因表达分析证实的稳定同位素配对实验表明,在ETSP-OMZ中,厌氧氨氧化过程中67%或更多的NO₂⁻来自硝酸盐还原,33%或更少来自好氧氨氧化。在开阔海洋环境中检测到异化硝酸盐还原为铵的过程。该过程在整个OMZ中均有发生,能够满足厌氧氨氧化对NH₄⁺的大部分需求。其余的NH₄⁺来自硝酸盐还原的再矿化过程,可能还来自微需氧呼吸。总体而言,深海硝酸盐(NO₃⁻)仅占ETSP中氮流失的约50%,而非通常认为的100%。由于全球气候变化导致海洋OMZ似乎正在扩大,因此在全球生物地球化学模型中纳入正确的氮流失途径变得愈发迫切,以便更准确地预测未来海洋中的氮循环将如何响应。