Department of Physics, North Carolina State University, Raleigh, NC 27695-7518, USA.
J Phys Condens Matter. 2010 Sep 22;22(37):372202. doi: 10.1088/0953-8984/22/37/372202. Epub 2010 Aug 31.
Using model interaction Hamiltonians for both electrons and phonons and Green's function formalism for ballistic transport, we have studied the thermal conductance and the thermoelectric properties of graphene nanoribbons (GNR), GNR junctions and periodic superlattices. Among our findings we have established the role that interfaces play in determining the thermoelectric response of GNR systems both across single junctions and in periodic superlattices. In general, increasing the number of interfaces in a single GNR system increases the peak ZT values that are thus maximized in a periodic superlattice. Moreover, we proved that the thermoelectric behavior is largely controlled by the width of the narrower component of the junction. Finally, we have demonstrated that chevron-type GNRs recently synthesized should display superior thermoelectric properties.
使用电子和声子的模型相互哈密顿量和弹道输运的格林函数形式,我们研究了石墨烯纳米带(GNR)、GNR 结和周期性超晶格的热导率和热电性质。在我们的研究结果中,我们确定了界面在确定 GNR 系统的热电响应方面的作用,无论是在单个结还是在周期性超晶格中。一般来说,在单个 GNR 系统中增加界面的数量会增加峰值 ZT 值,从而在周期性超晶格中达到最大值。此外,我们证明了热电行为主要由结的较窄部分的宽度控制。最后,我们证明了最近合成的雪佛龙型 GNR 应该具有优越的热电性能。