Suppr超能文献

组织工程软骨与宿主软骨的整合:一种体外模型。

Integration of tissue-engineered cartilage with host cartilage: an in vitro model.

机构信息

Mount Sinai Hospital, 600 University Avenue, Suite 476C, Toronto M5G 1X5, Canada.

出版信息

Clin Orthop Relat Res. 2011 Oct;469(10):2785-95. doi: 10.1007/s11999-011-1856-4.

Abstract

BACKGROUND

We developed a tissue-engineered biphasic cartilage bone substitute construct which has been shown to integrate with host cartilage and differs from autologous osteochondral transfer in which integration with host cartilage does not occur.

QUESTIONS/PURPOSES: (1) Develop a reproducible in vitro model to study the mechanisms regulating tissue-engineered cartilage integration with host cartilage, (2) compare the integrative properties of tissue-engineered cartilage with autologous cartilage and (3) determine if chondrocytes from the in-vitro formed cartilage migrate across the integration site.

METHODS

A biphasic construct was placed into host bovine osteochondral explant and cultured for up to 8 weeks (n = 6 at each time point). Autologous osteochondral implants served as controls (n = 6 at each time point). Integration was evaluated histologically, ultrastructurally, biochemically and biomechanically. Chondrocytes used to form cartilage in vitro were labeled with carboxyfluorescein diacetate which allowed evaluation of cell migration into host cartilage.

RESULTS

Histologic assessment demonstrated that tissue-engineered cartilage integrated over time, unlike autologous osteochondral implant controls. Biochemically there was an increase in collagen content of the tissue-engineered implant over time but was well below that for native cartilage. Integration strength increased between 4 and 8 weeks as determined by a pushout test. Fluorescent cells were detected in the host cartilage up to 1.5 mm from the interface demonstrating chondrocyte migration.

CONCLUSIONS

Tissue-engineered cartilage demonstrated improved integration over time in contrast to autologous osteochondral implants. Integration extent and strength increased with culture duration. There was chondrocyte migration from tissue-engineered cartilage to host cartilage.

CLINICAL RELEVANCE

This in vitro integration model will allow study of the mechanism(s) regulating cartilage integration. Understanding this process will facilitate enhancement of cartilage repair strategies for the treatment of chondral injuries.

摘要

背景

我们开发了一种组织工程化的双相软骨骨替代物构建体,该构建体已被证明可与宿主软骨整合,与自体软骨移植不同,自体软骨移植不会与宿主软骨整合。

问题/目的:(1)建立一种可重复的体外模型来研究调节组织工程化软骨与宿主软骨整合的机制,(2)比较组织工程化软骨与自体软骨的整合特性,(3)确定体外形成的软骨中的软骨细胞是否迁移到整合部位。

方法

将双相构建体放置在宿主牛骨软骨外植体中,并培养长达 8 周(每个时间点 n = 6)。自体软骨移植作为对照(每个时间点 n = 6)。通过组织学、超微结构、生物化学和生物力学评估整合。用于体外形成软骨的软骨细胞用羧基荧光素二乙酸酯标记,允许评估细胞向宿主软骨的迁移。

结果

组织学评估表明,组织工程化软骨随时间逐渐整合,与自体软骨移植对照不同。生物化学分析表明,随着时间的推移,组织工程化植入物的胶原蛋白含量增加,但远低于天然软骨。通过推出试验确定,整合强度在 4 至 8 周之间增加。荧光细胞在宿主软骨中检测到距离界面 1.5 毫米处,证明了软骨细胞的迁移。

结论

与自体软骨移植相比,组织工程化软骨随时间显示出更好的整合。随着培养时间的延长,整合程度和强度增加。有软骨细胞从组织工程化软骨向宿主软骨迁移。

临床相关性

这种体外整合模型将允许研究调节软骨整合的机制。了解这一过程将有助于增强软骨修复策略,以治疗软骨损伤。

相似文献

1
Integration of tissue-engineered cartilage with host cartilage: an in vitro model.
Clin Orthop Relat Res. 2011 Oct;469(10):2785-95. doi: 10.1007/s11999-011-1856-4.
2
Mechanical stimulation enhances integration in an in vitro model of cartilage repair.
Knee Surg Sports Traumatol Arthrosc. 2016 Jun;24(6):2055-64. doi: 10.1007/s00167-014-3250-8. Epub 2014 Aug 31.
3
Characterization of Migratory Cells From Bioengineered Bovine Cartilage in a 3D Co-culture Model.
Am J Sports Med. 2022 Sep;50(11):3090-3101. doi: 10.1177/03635465221113325. Epub 2022 Aug 19.
5
Repair of osteochondral defect with tissue-engineered chondral plug in a rabbit model.
Arthroscopy. 2005 Oct;21(10):1155-63. doi: 10.1016/j.arthro.2005.06.016.
6
Bioactive glass 13-93 as a subchondral substrate for tissue-engineered osteochondral constructs: a pilot study.
Clin Orthop Relat Res. 2011 Oct;469(10):2754-63. doi: 10.1007/s11999-011-1818-x.
7
Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
J Orthop Res. 2007 Oct;25(10):1277-90. doi: 10.1002/jor.20442.
8
Mechanically stimulated osteochondral organ culture for evaluation of biomaterials in cartilage repair studies.
Acta Biomater. 2018 Nov;81:256-266. doi: 10.1016/j.actbio.2018.09.058. Epub 2018 Sep 28.
10
Chondrocyte transplantation into articular cartilage defects with use of calcium alginate: the fate of the cells.
J Bone Joint Surg Am. 2003 Sep;85(9):1757-67. doi: 10.2106/00004623-200309000-00015.

引用本文的文献

1
Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies.
Nat Rev Rheumatol. 2023 Jul;19(7):403-416. doi: 10.1038/s41584-023-00979-5. Epub 2023 Jun 9.
2
Engineering Inflammation-Resistant Cartilage: Bridging Gene Therapy and Tissue Engineering.
Adv Healthc Mater. 2023 Jul;12(17):e2202271. doi: 10.1002/adhm.202202271. Epub 2023 Mar 15.
3
The effect of multi-material architecture on the ex vivo osteochondral integration of bioprinted constructs.
Acta Biomater. 2023 Jan 1;155:99-112. doi: 10.1016/j.actbio.2022.11.014. Epub 2022 Nov 13.
4
Characterization of Migratory Cells From Bioengineered Bovine Cartilage in a 3D Co-culture Model.
Am J Sports Med. 2022 Sep;50(11):3090-3101. doi: 10.1177/03635465221113325. Epub 2022 Aug 19.
5
Progress of Platelet Derivatives for Cartilage Tissue Engineering.
Front Bioeng Biotechnol. 2022 Jun 16;10:907356. doi: 10.3389/fbioe.2022.907356. eCollection 2022.
7
Influence of the Mechanical Environment on the Regeneration of Osteochondral Defects.
Front Bioeng Biotechnol. 2021 Jan 27;9:603408. doi: 10.3389/fbioe.2021.603408. eCollection 2021.
8
Current Applications of Growth Factors for Knee Cartilage Repair and Osteoarthritis Treatment.
Curr Rev Musculoskelet Med. 2020 Dec;13(6):641-650. doi: 10.1007/s12178-020-09664-6.
9
Generation of an in vitro model of the outer annulus fibrosus-cartilage interface.
JOR Spine. 2020 May 6;3(2):e1089. doi: 10.1002/jsp2.1089. eCollection 2020 Jun.
10
A Systematic Review and Guide to Mechanical Testing for Articular Cartilage Tissue Engineering.
Tissue Eng Part C Methods. 2019 Oct;25(10):593-608. doi: 10.1089/ten.TEC.2019.0116. Epub 2019 Sep 30.

本文引用的文献

3
Clinical efficacy of the microfracture technique for articular cartilage repair in the knee: an evidence-based systematic analysis.
Am J Sports Med. 2009 Oct;37(10):2053-63. doi: 10.1177/0363546508328414. Epub 2009 Feb 26.
5
The microfracture technique for the treatment of full-thickness articular cartilage lesions of the knee: midterm results.
Arthroscopy. 2008 Nov;24(11):1214-20. doi: 10.1016/j.arthro.2008.06.015. Epub 2008 Aug 28.
6
Cartilage tissue formation using redifferentiated passaged chondrocytes in vitro.
Tissue Eng Part A. 2009 Mar;15(3):665-73. doi: 10.1089/ten.tea.2008.0004.
8
Fresh osteochondral allografts for posttraumatic knee defects: long-term followup.
Clin Orthop Relat Res. 2008 Aug;466(8):1863-70. doi: 10.1007/s11999-008-0282-8. Epub 2008 May 9.
9
Long term results after implantation of tissue engineered cartilage for the treatment of osteochondral lesions in a minipig model.
J Mater Sci Mater Med. 2008 May;19(5):2029-38. doi: 10.1007/s10856-007-3291-3. Epub 2007 Oct 24.
10
A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years.
J Bone Joint Surg Am. 2007 Oct;89(10):2105-12. doi: 10.2106/JBJS.G.00003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验