Wang Wen-Xu, Ni Xuan, Lai Ying-Cheng, Grebogi Celso
School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 1):011917. doi: 10.1103/PhysRevE.83.011917. Epub 2011 Jan 27.
Species in nature are typically mobile over diverse distance scales, examples of which range from bacteria run to long-distance animal migrations. These behaviors can have a significant impact on biodiversity. Addressing the role of migration in biodiversity microscopically is fundamental but remains a challenging problem in interdisciplinary science. We incorporate both intra- and inter-patch migrations in stochastic games of cyclic competitions and find that the interplay between the migrations at the local and global scales can lead to robust species coexistence characterized dynamically by the occurrence of remarkable target-wave patterns in the absence of any external control. The waves can emerge from either mixed populations or isolated species in different patches, regardless of the size and the location of the migration target. We also find that, even in a single-species system, target waves can arise from rare mutations, leading to an outbreak of biodiversity. A surprising phenomenon is that target waves in different patches can exhibit synchronization and time-delayed synchronization, where the latter potentially enables the prediction of future evolutionary dynamics. We provide a physical theory based on the spatiotemporal organization of the target waves to explain the synchronization phenomena. We also investigate the basins of coexistence and extinction to establish the robustness of biodiversity through migrations. Our results are relevant to issues of general and broader interest such as pattern formation, control in excitable systems, and the origin of order arising from self-organization in social and natural systems.
自然界中的物种通常在不同的距离尺度上具有移动性,其例子从细菌游动到动物的长途迁徙不等。这些行为会对生物多样性产生重大影响。从微观层面研究迁徙在生物多样性中的作用至关重要,但在跨学科科学中仍是一个具有挑战性的问题。我们将斑块内和斑块间的迁徙纳入循环竞争的随机博弈中,发现局部和全球尺度上迁徙之间的相互作用能够导致强大的物种共存,其动态特征是在没有任何外部控制的情况下出现显著的目标波模式。这些波可以出现在不同斑块中的混合种群或孤立物种中,而与迁徙目标的大小和位置无关。我们还发现,即使在单物种系统中,目标波也可能由罕见突变产生,从而导致生物多样性的爆发。一个令人惊讶的现象是,不同斑块中的目标波可以表现出同步和时间延迟同步,其中后者可能有助于预测未来的进化动态。我们基于目标波的时空组织提供了一种物理理论来解释同步现象。我们还研究了共存和灭绝的区域,以通过迁徙建立生物多样性的稳健性。我们的结果与一些普遍且更广泛关注的问题相关,如模式形成、可兴奋系统中的控制以及社会和自然系统中自组织产生的秩序的起源。